POPLAFR®

Graph Toolchain for IPU

LEARNING FFROM DATA : COMPLUTE 2.0

Performance

@ Amount of Data | Amount of Compute

COMPUTE 2.0 DEVELOPMENT FLOW

ZOMPUTE 1.0

Integrated Design Environment:

ZOMPUTE 2.0

ML Graph Framework:

e.g. Visual Studio/ Eclipse e.g. TensorFlow/ PyTorch

Toolchain: eg.icc/cuda

Graph Toolchain: POPLAFR®

Compiler: e.g. cce/ LLvm

Debugger: e.g. cbB

Profiler: e.g. VTune

AANAROAR
HHUH M

Program/ @i

AANAROAR

Algorlthm ML

18

wite lslal
apitapati

preh
muoy
mnouzs
pep
iU s x
led
add
“h1

ebp,

e
vhp
[1E

ea,
CET N
Vs,

£l
- |enpraryg_il]

i1
|edxredy]
=21 F
2

ESS

P

_ _
_..l _
| 3
3 oy
_m I g
_m _m =
| € © | © L= g
£ o > >
| &2 e ©1 8%
@ (o] [o}
=} = =
£ 3 2 E. 53¢
S E ~) s 29
2 >
IW < _ + O C
mmo E=aro) M Omo
@ D E 25 i $ 00T
252 . | hs Q| 6z
= o S E o Q@ o O —
w 855 ©| 52 @ | &£EZ
O E3y2 5 9o o £28
E 258 O| 25 88 |most
1 WCO 1 = 3 a MWb Q
] Ta 2D 8 S N
6UP © o 1 O_IhC
o |8z & o N X £ | 9w,
= | Y2 c = N = HF =T QA

PCle Gen4 x16

64 GB/s bidirectional bandwidth to host

IPU-Exchange™

8 TB/s all to all IPU-Exchange™
IPU-Links™

bandwidth

Non-blocking, any communication pattern
80 IPU-Links, 320GB/s chip to chip

Compute

10,000s of compute threads
all operating in parallel

each with all the data that
they need, held locally

BSP phase.1

BSP Sync

All threads are
synchronized

Exchange

Data is exchanged so that every thread

has all the data that it needs for the

next phase of Compute

Memory

Memory

BLULK SYNCHFRECONOLS PARKALLEL (BSP)

Software bridging model for parallel computing

WHY IS BSP IMPORTANT?

CPU/GPU

- Optimization is difficult

DRAM (Knowledge model held in DRAM)

- Timing hazards occur

- He) o ey oF dhEngs PROCESSOR Convolution Ma-x Convolution Ma.x Convolution Ma-x
Layer pooling Layer pooling Layer pooling
Step.1 Step.2 Step.3 Step.4

- Data handling challenging

_ BSP Sync between layers

IPU N
- High performance IPU Convolution Ma.x Convolution Ma-x Convolution Ma-x
straight out of the box Layer pooling Layer pooling Layer pooling
‘ | |
- No timing hazards :
.__ BSP compute phases makes modifying layers eas
- Easy to modify h—— - ying lay Yy
®
- Whole Knowledge Model Convolution Max Convolution NEW Convolution Max
is held inside the IPU IPU Layer pooling Layer LAYER Layer pooling

U

18

USE YOUR EXISTING

KNN?(\)NDLEEPSGE Graph Libraries Framework

5 » e
PYTORCH ol 2O C++ [/ Python Graph Framework

\A
X W

O
Z
Z

g

Visualization
& Debug Tools

POPLAR® Graph Compiler

A o¥e, o¥s, obs, obe, G
(J .;*_,‘..9 Oy ..9
IPU-Processor IPU Servers
PCle Card and System

18

DEVELOP YOUR MODEL USING
INDUSTRY STANDARD ML FRAMEWORKS

D ec2-54-83-77-19 compute- 1 smazonaws com: H00

. &
S Main Graph Auxiliary Nodes
Ownicad SN Ut
Run o T e\ SemeriOen:

Seasion e |, euamm., TensorFlow PYTHRCH
runs

Upsoad

Trace input I

Color (® Swucte " /
O bewen "
. : .‘ v O e Variable_1 4:‘:—--7- ' '(

[Varable | o S ON NX @Xnet

randarm_unil

Optimized support for
inference and training

GFAPH LIBRAFIES

Highly optimized open source libraries partition work and data efficiently across IPU devices

poprandom popnn

poputil POPOPS poplin

Random number Neural network
functions functions (activation
fns, pooling, 10ss)

Utility functions for
building graphs

Pointwise and Matrix multiply and
reduction operators convolution functions

POPLAR®

() GitHub

JPEN-SOURCE GEAPH LIBEAFRIES

> 50 open-source GRAPH FUNCTIONS /example GRAPH FUNCTlON\

: : : : 32in_32out Fully C L
available inlcuding (matmul, conv, etc) built from... in_32out Fully_Connected_Layer

> 750 optimized COMPUTE ELEMENTS
such as (ReduceAdd, AddToChannel, Zero, etc)

easily create new GRAPH FUNCTIONS
using the library of COMPUTE ELEMENTS

modify and create new COMPUTE ELEMENTS

[
@ O GltHUb share library elements and new innovations »

C++ / PYTHON -

GFRAPH FRFAMEWDEK

GRAPH FRAMEWORK

LETS YOU EASILY MODIFY OR CREATE YOUR OWN GRAPH FUNCTIONS

Graph g(device); g.addCodelets(“codelets.cpp");
Tensor tl1 = g.addTensor(“float”, {4, 5});
Tensor t2 = g.addTensor(“float”, {4});

ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef vl
VertexRef v2

= g.addVertex(cs,
= g.addVertex(cs,
g.connect(t1[1]1[1], vi[“x"]);
g.connect(tl.slice({3, 1}, {4,

g.connect(t2[0], v1[“z"]);
g.connect(t1[0][3], v2[“x"]);

g.connect(tl.slice({2, 2}, {3,
g.connect(t2[3], v2[“z"]);

“AdderVertex”):;
“AdderVertex”):;

3}, vi[“y"1);

4}), v2[“y"1);

t1

0.3 0.3 0.7 45
0.3 07 | 002 | 45
122 | 122 | 06

715 008 | 56

Cs

(2
O,

12
[03 [322[120 | 96

12

ISUALIZATION FROM POPLAR®

S

POPLAFE®

expands the ML Framework

conv2 - 1x1
256 in, 64 out
S!;‘g <

JMPILES
Y Y RNl / \' 23 "'u".'""- ot ‘f"'L o AR\ e
- ’ ..,‘ :*, we b "-:;‘:;; ‘, w ,-- ,',‘. - /
& POPLAE® GEAPH COMPILER:
| Load balances code across IPU-CORES
Allocates data to IN-PROCESSOR-MEMORY

Orchestrates data exchanges

2 POPLAFR® GREAPH ENGINE:

ADVANCED VISUALIZATION AND DEBUG TOOLS

BSP superstep
|

| |
[| | [|
[| | [|
[| | [|

time —

|

1 - IPU-CORE

IPU CORES

18

|
1
|
1
Bl COMPUTE EXCHANGE

WAITING FOR SYNC B SYNC

SUPPORT@GRKAPHCORE.AI

COMPREHENSIVE USER DOCUMENTATION, EXAMPLES, FAQS, APPLICATION NOTES, TUTORIALS AND ONLINE SUPPORT

Why POPLA

Ir tion and

An introdu

amming

=) Executing graph programs
Hosted graph computation
Why have hosted computation?
Building graphs
Running a graph computation
Data arrays
Setting and examining graph state

Compiling and loading graph
programs

Host programs arrange graph computations via a graph engine. A graph program cannot execute
until the host creates an engine to runit.

The engine can be seen as a separate process to the the host application which is implemented on
the hardware resources available. Once the host application creates the engine process it interacts
with it as shown in the following diagram:

Host
Build graph
Create engine Engine
Set state
Set graph state
Set memory Set links Tk
transfer links
Run
Execute graph
Run
control program
Idle/other work > Transfer to/from
<«—| host memory
Complete

Examine results

To create an engine, your program needs to create an engine builder object that is used to configure
and create the actual engine. There are several engine builder types that create engines for different

types of deployment. The simplest of these it the cruengin object that builds and engine that

runs on the host CPU. The host program needs to create a object.

16

POPLAR® IS A NEW TYPE OF GRAPH TOOLCHAIN THAT
WILL LET INNOVATORS CREATE THE NE=-

BREAKTHROLUGHS IN MACHINE INTELLIGENCE

