

Page 1 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

THE GRAPHCORE SOFTWARE STACK: BUILT

TO SCALE

INTRODUCTION

Software for new processor designs is critical to enabling application deployment and

optimizing performance. UK-based startup Graphcore, a provider of silicon for

application acceleration, places significant emphasis on software, dedicating roughly

half its engineering staff to the challenge. Graphcore’s Intelligence Processing Unit

(IPU) utilizes the expression of an algorithm as a directed graph, and the company’s

Poplar software stack translates models and algorithms into those graphs for execution.

The software simplifies adoption of the chip for AI and parallel computing, making it vital

to the company’s success. This paper explores the benefits provided by the company’s

software and discusses how these capabilities could speed development and

deployment of applications that run on Graphcore IPUs.

A BRIEF OVERVIEW OF THE INTELLIGENCE PROCESSING UNIT

Before we dive into the software, a rudimentary understanding of the underlying

hardware will be helpful. Graphcore’s Intelligence Processing Unit (IPU) is

fundamentally different from today’s CPU, GPU, and other AI processors. The IPU and

Poplar software combination is not strictly a machine-learning (ML) tool set. The IPU is

a flexible, scalable, fine-grained parallel processor designed to deliver high performance

for a wide range of computationally intensive algorithms. Together, the IPU and Poplar

form a graph-programming platform that enables applications in finance, High

Performance Computing (HPXC), robotics, and data science and supports machine-

intelligence workloads.

The IPU design goal was to solve problems beyond the capabilities of current

acceleration architectures found in most ASICs and GPUs. Typically, those chips are

optimized for dense linear-algebra workloads which may be implemented in some

convolutional neural networks (CNNs) and are less well-suited for applications with

more varied computation, communication, or data access patterns.

The IPU is composed of 1,216 interconnected processing tiles. Each tile has its own

core and local on-die SRAM memory to enable the model and data to reside on the IPU,

thereby greatly improving memory bandwidth and latency. These tiles are

Page 2 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

interconnected through an 8 TB/s on-die fabric (the “IPU-Exchange”), which also

connects through “IPU-Links” running at 320 GB/s to create a chip-to-chip fabric.

FIGURE 1: THE GRAPHCORE INTELLIGENT PROCESSOR

The Graphcore Intelligent Processor has 1,216 "tiles" where the computation cores and memory all reside. These
tiles are all connected by a high-speed, low-latency “Exchange” fabric, which also extends off the chip to enable
multi-chip parallelism to thousands of chips.

Source: Graphcore

Essentially, the entire system (often composed of many IPUs) executes in two

synchronous phases: computation and communication. Applications that target the IPU

are expressed as computational graphs. Computations are performed at the vertices of

the graph, and the results are communicated to adjacent vertices according to the

edges interconnecting the graph. The communication phase is implemented as a Bulk

Synchronous Parallel (BSP) operation, which efficiently transfers data from each tile’s

on-die SRAM memory to connected tiles’ memory. In addition to computation

instructions, each IPU core features a dedicated tile-level instruction set for

communication phases of the BSP model.

Page 3 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

The integrated exchange-communication fabric is designed to support BSP for both

data and model parallelism — enabled by the graph compiler — potentially scaling to

thousands of nodes. An important distinction for the IPU architecture, according to

Graphcore, is the ability to efficiently process sparse data and graphs, which improves

performance while reducing the total memory requirements.

Graphcore’s Poplar SDK addresses the programming challenges this unique

architecture presents by automating the compilation and optimization workflow,

therefore exploiting the fine-grained parallelism of a fabric of IPUs without requiring

hand-tuned instruction-level programming. Direct hardware access is also supported.

THE GRAPHCORE SOFTWARE PLATFORM

OVERVIEW

Graphcore is addressing two challenges in software development for its chip: 1) make it

easy to optimize and run existing ML software such as deep neural networks, or DNNs,

expressed in high-level frameworks, and 2) enable research and development of

entirely new fine-grained parallel workloads to run on an IPU infrastructure. The latter

ability is central to the company’s strategy and could enable Graphcore to address a

much larger set of market segments.

FIGURE 2: THE GRAPHCORE SOFTWARE PLATFORM

The Graphcore software platform takes models from many popular AI frameworks and optimizes the code for
execution on IPUs. It also supports building custom vertices, or applets, of optimized codes for developing new
neural networks and other algorithms that can be expressed as graphs.

Source: Graphcore

Page 4 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

As Figure 2 shows, Poplar consists of graph and element compilers, optimized libraries,

and a graph engine for run-time management and scheduling. ML frameworks feed the

Poplar stack through the Poplar Advanced Run Time (PopART) interface for the Open

Neural Network eXchange (ONNX) as well as the Accelerated Linear Algebra (XLA)

compiler for TensorFlow-based models. Graphcore says direct support will be provided

for PyTorch by the end of 2020.

Let’s look at how Graphcore’s software platform facilitates application development for

the IPU. Specifically, we will examine these major components and consider their

potential to accelerate performance and adoption: frameworks, compilers, run-time

support, and libraries.

PORTING AND DEVELOPING MODELS USING OPEN FRAMEWORKS

To evaluate a new AI accelerator, a deep-learning scientist would first port, train, and

test existing DNNs using standard frameworks such as TensorFlow or PyTorch, and

then compare the results (training time and accuracy) with known platforms. The

software team at Graphcore has made it simple to train and run these neural nets on

the IPU as well as to prototype new solutions. Developers can augment standard

network layers with customized layer types and new library functions, which they can

then include in open source frameworks. This capability can augment or enhance

existing layers as well.

For new applications that are outside the scope of popular DNN frameworks, Graphcore

has built a custom framework for the IPU. The Graph Framework is not intended to

compete with existing frameworks. Conversely, it is available to enable completely new

parallel workloads to run on their graph architecture.

Graphcore intends to release its software to open source over the coming year, and the

IPU SDK downloads already include Poplar library source code. This is a critical

direction for Graphcore, as an open-source strategy should help broaden active industry

participation in research and development on the IPU platform, enabling the community

to develop and upstream new libraries and layers.

OPTIMIZING EXECUTION: POPLAR COMPILERS, LIBRARIES, AND GRAPH ENGINE

The Graph and Graph Element Compilers

The development process begins with the Graph Compiler, which builds the model for

deployment and in turn pulls in Graph Elements (kernels or “codelets”) that run on the

Page 5 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

IPU. There are 2 phases here, compiling computation (graph vertices) and generating

the code to implement BSP communications (the edges for graph).

The Graph Compiler, which lies at the heart of run-time deployment and optimization,

has been under development for over 5 years. It optimizes code reuse, minimizes data

movement, and exploits data locality. This approach helps the IPU perform well in

sparse models, which tax other architectures that are more suited to large, contiguous

memory-access patterns. Graphcore designed the compiler to simplify programming the

IPU, especially in cases where the work is deployed across many IPUs. Importantly, the

compiler alleviates the burden on developers to manage data or model parallelism.

Instead of programming to, say, 16 distinct ASICs or GPUs in a server, the Poplar

Graph Compiler targets a single “Multi-IPU,” enabling developers to focus on their data

and algorithms. This is a distinct advantage over most other accelerators.

The Poplar Element Compiler acts as a back end, compiling code computation into

elements to run at the vertices. So, the workflow looks like:

 TensorFlow front end -> XLA -> Poplar Graph Compiler -> Poplar Element Compiler

The IPU has a full and flexible instruction set, allowing tiles to essentially run any code
or algorithm, and Graph Elements can be written in C/C++ using the LLVM-based
compiler or directly in IPU assembly. All the Poplar Libraries are built using this
compilation tool set.

FIGURE 3: GRAPHCORE’S POPLAR LIBRARIES

Graphcore has built over 50 primitives for commonly required functions and operators. Users have the ability to
add new libraries to support new workloads as they are developed and contribute them to the open source
community.

Source: Graphcore

Page 6 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

Poplar Libraries

The Poplar Libraries contain more than 50 highly optimized primitives and building

blocks targeting common operations such as linear algebra, common neural-network

functions, and other operations used in machine-intelligence models. Each function

works by combining building blocks from an extensive library of more than 750 high-

performance compute elements, or codelets. The Poplar Libraries consume a high-level

graph description from a user application and build the massively parallel computational

graph required to target the IPU. This process includes work and data partitioning to

target the IPU’s distributed processor and memory architecture. The Poplar Libraries

build a custom layout for every operation that is highly tuned for execution on the IPU.

Libraries also offer the possibility of publishing and running completely new kernels and

DNN layers for new applications that can run on the IPU architecture.

The Graph Engine

The Poplar Graph Engine provides run-time support for the IPU. This support includes

connecting software on the host CPU with software running on the IPU; managing data

movement; and managing the IPU device itself for I/O, application loading, debugging,

and profiling. Optimizing data flow from the CPU is critical to achieving maximum

throughput, and the Graph Engine orchestrates the data I/O pipelines to enable

continuous execution. The Graph Engine is supported by custom hardware on the IPU

that facilitates debugging and profiling.

FIGURE 4: GRAPHCORE ECOSYSTEM SUPPORT

Graphcore includes support for deployment capabilities rarely found in startups.

Source: Graphcore

Page 7 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

DEPLOYMENT: INDUSTRY STANDARD TOOLS AND PLATFORMS

Graphcore software extends to the efficient deployment of production workloads, both in

the public cloud and in on-premises infrastructures. Specifically, Dell Technologies sells

and supports the dual IPU Graphcore C2 PCIe cards for servers, while Microsoft Azure

and Cirrascale support IPU cloud instances (in preview at Azure). For management and

orchestration, Graphcore supports the virtualization, security, and orchestration tools

that have become standard across the industry, including support for Kubernetes,

Docker, and Microsoft Hyper-V. Graphcore is the only startup we know that has

extended its offerings to include such a large suite of deployment software and

infrastructure.

CONCLUSIONS: GRAPHCORE IS BUILT FOR PRODUCTION, AT SIGNIFICANT SCALE

When training neural networks, developers require fast, scalable accelerators that can

handle the massive computational loads required by larger models such as natural

language processing and conversational interfaces. More broadly, computationally

intensive applications are emerging which require a high-speed parallel processor that

goes beyond the matrix-multiplication operations common to neural networks.

Graphcore appears to have developed just such a general-purpose, high-performance

hardware and software platform to meet these needs.

Graphcore’s software stack stands out in several areas:

1. The Poplar Graph Compiler enables “Multi-IPU” parallelism while implementing

efficient memory use and data movement.

2. The Graph Framework enables new workloads, especially new algorithms

(graphs) that emerge from domains outside the realm of traditional ML

frameworks.

3. The full support and optimization of open-source ML frameworks can be

extended by the user with custom “applets” that can implement new layers and

kernels.

4. Graphcore’s open-source strategy should help the company extend its reach

across a wide community of researchers in multiple disciplines.

Graphcore has also taken the next step in management software, providing

containerization, orchestration, security, and virtualization on which data centers have

become reliant and comfortable. Combined with the company’s hardware design and

software stack, these steps will ease adoption as more applications are deployed on the

Graphcore platform.

Page 8 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

One of the challenges facing Graphcore is being able to compare its platform to

alternative products. This is a natural consequence of targeting new workloads that are

not yet widely adopted or for which other platforms are not well tuned. While Graphcore

claims that the IPU can run perhaps 2-4 times faster on “simple” models such as

Resnet, Graphcore has published results on their website that show an order-of-

magnitude better performance in emerging workloads.1 And that is where the magic

begins.

1 https://cdn2.hubspot.net/hubfs/729091/assets/pdf/Benchmarks_slides_May2020-comp.pdf

https://cdn2.hubspot.net/hubfs/729091/assets/pdf/Benchmarks_slides_May2020-comp.pdf

Page 9 Graphcore Software Stack: Built to Scale May 2020
 Copyright ©2020 Moor Insights & Strategy

IMPORTANT INFORMATION ABOUT THIS PAPER

CONTRIBUTOR
Karl Freund, Senior Analyst at Moor Insights & Strategy

PUBLISHER
Patrick Moorhead, Founder, President, & Principal Analyst at Moor Insights & Strategy

INQUIRIES
Contact us if you would like to discuss this report, and Moor Insights & Strategy will respond promptly.

CITATIONS
This paper can be cited by accredited press and analysts but must be cited in-context, displaying author’s
name, author’s title, and “Moor Insights & Strategy”. Non-press and non-analysts must receive prior
written permission by Moor Insights & Strategy for any citations.

LICENSING
This document, including any supporting materials, is owned by Moor Insights & Strategy. This
publication may not be reproduced, distributed, or shared in any form without Moor Insights & Strategy's
prior written permission.

DISCLOSURES
This paper was commissioned by Graphcore. Moor Insights & Strategy provides research, analysis,
advising, and consulting to many high-tech companies mentioned in this paper. No employees at the firm
hold any equity positions with any companies cited in this document.

DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. Moor Insights & Strategy disclaims all warranties as to
the accuracy, completeness, or adequacy of such information and shall have no liability for errors,
omissions, or inadequacies in such information. This document consists of the opinions of Moor Insights
& Strategy and should not be construed as statements of fact. The opinions expressed herein are subject
to change without notice.

Moor Insights & Strategy provides forecasts and forward-looking statements as directional indicators and
not as precise predictions of future events. While our forecasts and forward-looking statements represent
our current judgment on what the future holds, they are subject to risks and uncertainties that could cause
actual results to differ materially. You are cautioned not to place undue reliance on these forecasts and
forward-looking statements, which reflect our opinions only as of the date of publication for this document.
Please keep in mind that we are not obligating ourselves to revise or publicly release the results of any
revision to these forecasts and forward-looking statements in light of new information or future events.

©2020 Moor Insights & Strategy. Company and product names are used for informational purposes only
and may be trademarks of their respective owners.

mailto:karl@moorinsightsstrategy.com
http://www.moorinsightsstrategy.com/
mailto:patrick@moorinsightsstrategy.com
http://www.moorinsightsstrategy.com/
mailto:patrick@moorinsightsstrategy.com

