
 

 
 

 
 

BUILDING LARGE MODELS ON IPU SYSTEMS 
White Paper 

 

 



 

Building Large Models on IPU Systems: Graphcore White Paper   www.graphcore.ai 2 

TABLE OF CONTENTS 
 
Towards Trillion-Parameter Models ............................................. 3 

Graphcore IPU Memory System .................................................. 4 

Optimised Data Communication ................................................. 5 

Phased Execution ......................................................................... 6 

Large Model Mapping .................................................................. 7 

Summary .................................................................................... 10 

Get Started with the IPU ............................................................. 11 
 
 
 
 
 
 
 



 

Building Large Models on IPU Systems: Graphcore White Paper   www.graphcore.ai 3 

TOWARDS TRILLION-PARAMETER MODELS 

Graphcore IPU-POD systems are being deployed today by customers for training and 
fine-tuning large models. We have huge demand for natural language processing with 
an increasing interest in Generative Pre-Trained Transformer (GPT) models from 
forward-thinking organisations in banking, healthcare, insurance, government, 
manufacturing and other AI-first enterprises. 

Our results in MLPerf have shown our ability to surpass other solutions in cost 
efficiency for today’s models. The compute scaling we shared at the same time as our 
MLPerf results on innovative, up and coming Transformer models like GPT and ViT 
(Vision Transformer) shown in the diagram below on our flagship large IPU-POD128 and 
IPU-POD256 systems shows the bandwidth and capacity of our IPU-Link and IPU-Fabric. 
We also demonstrated the maturity of our software stack, Poplar, which consistently 
delivers impressive performance optimisation across all machine learning models.  
 

 
The performance capability of our large IPU-POD systems is truly impressive. No other 
innovative AI systems can deliver this much compute with so many independent 
programs and with this capacity of memory that delivers PetaByte/sec memory 
bandwidth. 

This new level of performance is allowing customers to experiment and to build new 
types of large models on IPU-POD128 and IPU-POD256 systems. The IPU-POD256 has the 
potential to hold models with tens of billions of parameters all inside the IPU's  
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In-Processor Memory that can be accessed at tens of PetaByte/sec memory bandwidth. 
This combination of model size with such high bandwidth is allowing innovators to 
explore new types of large models that are unlocking the potential of sparse 
computing and opening the door to new approaches in AI. We can now start to 
develop models where only the relevant training data is directed to the correct 
parameters for much more efficient model training. We can start to break free from the 
exponential growth in compute that conventional processors demand with today’s 
large model approaches.  
 
But you are not limited to billions of parameters because Graphcore’s IPU Exchange 
Memory, that is supported through attached streaming memory and our Poplar 
software SDK, allows much larger models to be easily supported. The 16 TeraBytes of 
IPU Exchange Memory capacity in an IPU-POD256 system opens the possibility to 
support models with trillions of parameters. These brain-scale models can also benefit 
from the new compute approaches made possible by our IPU processors. 
 
In this white paper, we will show some high-level examples of how developers are 
mapping these large models on to IPU-POD systems, all supported by our mature and 
easy to use software stack, Poplar. 
 

GRAPHCORE IPU MEMORY SYSTEM 

When we developed the IPU we focused on building a highly scalable memory system. 
This is one of the most exciting and forward-looking aspects of our IPU processor. We 
developed a radical new approach to memory organisation.  
 
First, we focused on having a huge amount of In-Processor Memory. Each Colossus 
GC200 IPU has nearly 1 GigaByte of memory inside the processor that can be accessed 
at the full compute speed of the processor - this is unprecedented. Secondly, we made 
sure that the IPU could access other memory sources, which we call Streaming 
Memory. Our IPU-Machine M2000 system contains plug-in DDR-DIMM modules just for 
this purpose. These are typically configured with 256 GigaByte of streaming memory 
but can also be configured with larger DIMM modules for even larger capacity 
memories. Under Poplar SDK software control, data and programs can be streamed 
from external memory sources into the IPU In-Processor Memory. Our Poplar software 
can orchestrate the exchange of data between the internal memory and the external 
streaming memory. The design of this sophisticated memory system is centred around 
two key principles: 

• no assumptions about memory access behaviour are built into the hardware 
• we allow full explicit software control of all memory accesses 

 
The high speed IPU-Links built into each IPU-Processor and the IPU-Fabric that is built 
into each of our IPU-Machine M2000 systems, not only allows us to build larger scale-
out IPU-POD systems, but it also allows both the In-Processor Memory and the 
Streaming Memory to be shared across the full IPU-POD system. The same principles of 
streaming memory from the local DDR-DIMM in an IPU-Machine applies for streaming 
data over the IPU-Links from other IPUs and from other IPU-Machine memory. This can 
be orchestrated from any part of the IPU-POD system to any other part. All memory use 
is directed by our Poplar SDK which allows us to provide a platform for applications 
that deliver the most flexibility together with highly efficient memory accesses.  
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Exchange Memory is the term we use for these Poplar SDK features that manage the 
use of In-Processor and Streaming Memory both inside IPU, inside a single IPU-Machine 
and between IPU-Machines in an IPU-POD system. The Exchange Memory features that 
Poplar supports are extensive and have been carefully designed and are constantly 
being added to. Like any memory hierarchy, the tools must efficiently balance between 
fast local memory (of which the IPU has vastly more than most processors) and 
Streaming Memory (which gives a much larger capacity). 
 
OPTIMISED DATA COMMUNICATION 

Streaming memory can be used to optimise the time taken to move data to and from 
the local IPUs or to IPUs in other IPU-Machines spread across the IPU-POD. Data can be 
replicated and the accesses sharded to support different compute approaches. The 
Streaming Memory can also act as an intermediate buffer for communication from the 
host. These optimisations are supported in the Poplar SDK and new optimisations help 
users easily pipeline and shard models. One of the great aspects of these optimisations 
is that they can work automatically with your application – no changes to the high-level 
framework code that defines your model is required. 
 
The movement of data inside the IPU, between IPUs and between IPU-Machines is all 
supported under the IPU Bulk Synchronous Communication (BSP) scheme. 
 

 
 
This robust parallel processing approach ensures that for highly parallel operations 
there are no race conditions and no live locks and there are no dead locks. This level of 
explicit parallel execution control is missing from all other processors but is critical in 
making the execution of large models robust and scalable across a large scale-out 
machine.  
 
In addition to this BSP execution, the Poplar SDK manages all communication between 
the different processor cores and between the different independent parallel 
programs. The Poplar SDK also orchestrates streaming memory accesses so that they 
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happen in the background, hidden behind compute. This ensures that the data and 
code that is required next will always be available before this data and code is needed 
in the execution of the full program.  
 
This sophistication of control makes it possible to orchestrate large compute tasks 
across a complete IPU-POD128 system or IPU-POD256 system. It is even possible to 
connect IPU-POD256 systems together to build even larger systems and the Poplar SDK 
tools can support these systems too. The developer can easily explore different 
pipeline model parallel and tensor model parallel approaches to ensure that the highest 
performance is achieved. Activations or weights required later in the model training 
cycle can be offloaded to streaming memory and restored by Poplar later in the 
computing cycle. Sometimes it might be better to store only a small sample of the 
activations and then recompute the intermediate activations on the backward pass 
when training a model. This can save memory bandwidth and allows the very high level 
of compute available on IPUs to be used efficiently. This trade off can be used to 
balance compute vs. bandwidth. Some models may require larger state with less 
compute while other models may require larger compute activity on smaller state. This 
trade-off may also vary across the model training cycle and so it is possible to maintain 
a high level of control over the balance of compute and I/O bandwidth. 
 
PHASED EXECUTION 

Our Poplar SDK software takes a high-level model description from AI frameworks such 
as TensorFlow or PyTorch and maps this highly abstracted graph representation into a 
low-level compute graph that can then be compiled to run inside the IPU or across a 
group of IPUs. 
 
The Poplar SDK system not only builds the compute, but it also orchestrates all the 
communication across the IPU exchange fabric that is inside each IPU processor and 
the communication across the IPU-Links and IPU-Fabric that connect the separate IPUs 
inside an IPU-POD system. Poplar also manages all the data storage and ensures that 
the correct data is in the right place at the right time to support the next phase of 
compute. This highly sophisticated approach is what makes it possible to scale large 
models across all the IPU processors in an IPU-POD system and even to spread the 
compute across multiple IPU-POD systems. 
 
However, the Compute Graphs that Poplar produces can also be partitioned into 
smaller sub-Graphs that can then execute in phases on the IPU. The sub-graph state is 
moved in and out in background mode from the streaming memory, as the compute 
passes across the whole graph. We call this Phased Execution.  
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A very simple example of the subgraphs used in phased execution, showing the 
separate phases over the layers of a ResNet-50 model is shown below. The heat map 
shows the executing part of the compute graph at each computing phase: 
 

 
Simple example of phased execution across the layers of a ResNet-50 model 

 
By controlling the size of the sub-graph the developer is able to take full advantage of 
the large In-Processor Memory. Unlike a GPU which must constantly shuffle data 
backwards and forwards from its connected memory, the IPU is able to hold large 
amounts of state inside the processor and this approach dramatically reduces the 
external memory bandwidth requirements allowing IPUs to take advantage of much 
larger capacity DDR-DIMM modules. Graphcore CTO Simon Knowles provided a clear 
description of the advantages of the IPU's In-Processor Memory during his talk at the 
Hot Chips Conference 2021. 
 
Phased Execution effectively provides an additional dimension of flexibility for 
mapping large models to arrays of IPU processors. 
 
LARGE MODEL MAPPING 

IPU-POD128 and IPU-POD256 systems provide a rich set of resources that allow large 
models with very large parameter counts, large activation state and complex optimiser 
state, all to be supported. The extensive set of software features in Poplar SDK allow a 
developer to map large models to these powerful computing platforms. 

Models can be decomposed across a large number of IPUs to support fast training (see 
diagram below). It is possible to pipeline the stages of a deep learning model across 
IPUs connected in the p-axis. It is also possible to shard the model tensors across 
multiple IPUs connected in the t-axis. The training data can then be split into 
conventional data-parallel paths that are also commonly used on GPUs. This is the data 
replica dimension, the r-axis. Associated with the data replica dimension we can use 
streaming memory to access the model weight data. The weights for the whole model 
can be split amongst the replicas for more efficient use of memory and then only 
replicated for each phase of execution. We call this replicated tensor sharding (rts). The 
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optimiser state (momentum terms etc.) is accessed less often than the main weights so 
we may spread these over a different number of replicas than the weights (rts’). In 
addition to this parallel execution on a sub-graph, we can implement phased execution 
across the layers of the model, optimising the size of the sub-graphs, to achieve high 
levels of compute with all the state required for the sub-graph computation held inside 
the large IPU In-Processor Memory. 

Model decomposition across an IPU-POD 

 
The total number of IPUs in any specific model decomposition is calculated as t*p*r. By 
varying the level of model pipelining, tensor sharding and the data parallel dimension, 
it is possible to build large models that efficiently use all the available compute and 
memory resources in an IPU-POD128 or IPU-POD256 system. 
 
Each IPU will use a proportion of weights given by 1/ (t * p) but the proportion of 
weights stored in each IPU In-Processor Memory can be calculated as 1 / (t * p * rts) 
given replicated tensor sharding. Phased execution can then be used to optimise the 
proportion of weights that are available in each sub-graph and to optimise for the best 
use of the IPU In-Processor Memory as well as to maximise the compute efficiency.  
 
The global batch size is calculated as b * r where b is the replica batch size. The 
developer can select an appropriate replica batch size to achieve the desired global 
batch size for their model. 
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To understand this better we can look at a simple example of a BERT-Large model 
mapped to a smaller IPU-POD16 system:  

 
In this example we have chosen to pipeline the model over 4 IPU processors and not to 
shard the tensors. A data parallel dimension of 4 was chosen to maximise the use of all 
16 IPU processors in the IPU-POD16 system. If we expand the pipeline depth to a 
dimension of 8, we can fit the whole model including all the optimiser state inside the 
IPU In-Processor Memory on this single IPU-POD16 system and can achieve class leading 
training performance and fine-tuning results as demonstrated by our MLPerf 
performance results.  
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A more complex example is shown below, with a 175Bn parameter GPT-3 NLP model 
mapped over an IPU-POD256 system. 

Example of 175Bn parameter GPT-3 mapped to IPU-POD256 

 
In this example, we have a much larger model that is now mapped over a single IPU-
POD256 system. We have chosen a pipeline model depth of 8 in this case, and we have 
sharded the tensors across 8 IPUs for each pipeline stage. This gives a total of 64 IPUs 
for each data replica in the data parallel axis and with the data parallel axis width set to 
4 we can use all 256 IPU processors in the system. With a smaller GPT class model we 
can fit all the weights inside the IPU In-Processor Memory but with 175Bn parameters 
we take advantage of Phased Execution to split this larger model into a small number of 
sub-graphs. With 96 layers in a GPT-3 model we can still use all the available In-
Processor Memory and all the compute resources efficiently. By expanding to more 
sub-graphs implemented using Phased execution we can support even larger models 
with trillions of parameters. To further reduce training time, we can also scale across 
multiple, network-connected IPU-POD256 systems. 
 
SUMMARY  

We can see that IPU-POD systems can easily support today’s large AI models, including 
GPT and beyond. IPU-POD systems can scale to support the largest models. However, 
the extremely rich In-Processor Memory and much more highly parallel IPU processor 
opens the opportunity to explore a much richer set of next generation large models. 
Interesting areas of research are already being investigated on IPUs around sparse 
models and Graph Neural Networks. We are looking forward to seeing the incredible 
new breakthroughs that innovators will be able to achieve using the advanced IPU-
POD128 and IPU-POD256 systems. 
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GET STARTED WITH THE IPU 

 
Learn more about how Graphcore can accelerate your next machine intelligence 
project. 
 
 
TALK TO US 
 
Get Started > 
 


