

BUILDING LARGE MODELS ON IPU SYSTEMS
White Paper

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 2

TABLE OF CONTENTS

Towards Trillion-Parameter Models ... 3

Graphcore IPU Memory System .. 4

Optimised Data Communication ... 5

Phased Execution ... 6

Large Model Mapping .. 7

Summary .. 10

Get Started with the IPU ... 11

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 3

TOWARDS TRILLION-PARAMETER MODELS

Graphcore IPU-POD systems are being deployed today by customers for training and
fine-tuning large models. We have huge demand for natural language processing with
an increasing interest in Generative Pre-Trained Transformer (GPT) models from
forward-thinking organisations in banking, healthcare, insurance, government,
manufacturing and other AI-first enterprises.

Our results in MLPerf have shown our ability to surpass other solutions in cost
efficiency for today’s models. The compute scaling we shared at the same time as our
MLPerf results on innovative, up and coming Transformer models like GPT and ViT
(Vision Transformer) shown in the diagram below on our flagship large IPU-POD128 and
IPU-POD256 systems shows the bandwidth and capacity of our IPU-Link and IPU-Fabric.
We also demonstrated the maturity of our software stack, Poplar, which consistently
delivers impressive performance optimisation across all machine learning models.

The performance capability of our large IPU-POD systems is truly impressive. No other
innovative AI systems can deliver this much compute with so many independent
programs and with this capacity of memory that delivers PetaByte/sec memory
bandwidth.

This new level of performance is allowing customers to experiment and to build new
types of large models on IPU-POD128 and IPU-POD256 systems. The IPU-POD256 has the
potential to hold models with tens of billions of parameters all inside the IPU's

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 4

In-Processor Memory that can be accessed at tens of PetaByte/sec memory bandwidth.
This combination of model size with such high bandwidth is allowing innovators to
explore new types of large models that are unlocking the potential of sparse
computing and opening the door to new approaches in AI. We can now start to
develop models where only the relevant training data is directed to the correct
parameters for much more efficient model training. We can start to break free from the
exponential growth in compute that conventional processors demand with today’s
large model approaches.

But you are not limited to billions of parameters because Graphcore’s IPU Exchange
Memory, that is supported through attached streaming memory and our Poplar
software SDK, allows much larger models to be easily supported. The 16 TeraBytes of
IPU Exchange Memory capacity in an IPU-POD256 system opens the possibility to
support models with trillions of parameters. These brain-scale models can also benefit
from the new compute approaches made possible by our IPU processors.

In this white paper, we will show some high-level examples of how developers are
mapping these large models on to IPU-POD systems, all supported by our mature and
easy to use software stack, Poplar.

GRAPHCORE IPU MEMORY SYSTEM

When we developed the IPU we focused on building a highly scalable memory system.
This is one of the most exciting and forward-looking aspects of our IPU processor. We
developed a radical new approach to memory organisation.

First, we focused on having a huge amount of In-Processor Memory. Each Colossus
GC200 IPU has nearly 1 GigaByte of memory inside the processor that can be accessed
at the full compute speed of the processor - this is unprecedented. Secondly, we made
sure that the IPU could access other memory sources, which we call Streaming
Memory. Our IPU-Machine M2000 system contains plug-in DDR-DIMM modules just for
this purpose. These are typically configured with 256 GigaByte of streaming memory
but can also be configured with larger DIMM modules for even larger capacity
memories. Under Poplar SDK software control, data and programs can be streamed
from external memory sources into the IPU In-Processor Memory. Our Poplar software
can orchestrate the exchange of data between the internal memory and the external
streaming memory. The design of this sophisticated memory system is centred around
two key principles:

• no assumptions about memory access behaviour are built into the hardware
• we allow full explicit software control of all memory accesses

The high speed IPU-Links built into each IPU-Processor and the IPU-Fabric that is built
into each of our IPU-Machine M2000 systems, not only allows us to build larger scale-
out IPU-POD systems, but it also allows both the In-Processor Memory and the
Streaming Memory to be shared across the full IPU-POD system. The same principles of
streaming memory from the local DDR-DIMM in an IPU-Machine applies for streaming
data over the IPU-Links from other IPUs and from other IPU-Machine memory. This can
be orchestrated from any part of the IPU-POD system to any other part. All memory use
is directed by our Poplar SDK which allows us to provide a platform for applications
that deliver the most flexibility together with highly efficient memory accesses.

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 5

Exchange Memory is the term we use for these Poplar SDK features that manage the
use of In-Processor and Streaming Memory both inside IPU, inside a single IPU-Machine
and between IPU-Machines in an IPU-POD system. The Exchange Memory features that
Poplar supports are extensive and have been carefully designed and are constantly
being added to. Like any memory hierarchy, the tools must efficiently balance between
fast local memory (of which the IPU has vastly more than most processors) and
Streaming Memory (which gives a much larger capacity).

OPTIMISED DATA COMMUNICATION

Streaming memory can be used to optimise the time taken to move data to and from
the local IPUs or to IPUs in other IPU-Machines spread across the IPU-POD. Data can be
replicated and the accesses sharded to support different compute approaches. The
Streaming Memory can also act as an intermediate buffer for communication from the
host. These optimisations are supported in the Poplar SDK and new optimisations help
users easily pipeline and shard models. One of the great aspects of these optimisations
is that they can work automatically with your application – no changes to the high-level
framework code that defines your model is required.

The movement of data inside the IPU, between IPUs and between IPU-Machines is all
supported under the IPU Bulk Synchronous Communication (BSP) scheme.

This robust parallel processing approach ensures that for highly parallel operations
there are no race conditions and no live locks and there are no dead locks. This level of
explicit parallel execution control is missing from all other processors but is critical in
making the execution of large models robust and scalable across a large scale-out
machine.

In addition to this BSP execution, the Poplar SDK manages all communication between
the different processor cores and between the different independent parallel
programs. The Poplar SDK also orchestrates streaming memory accesses so that they

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 6

happen in the background, hidden behind compute. This ensures that the data and
code that is required next will always be available before this data and code is needed
in the execution of the full program.

This sophistication of control makes it possible to orchestrate large compute tasks
across a complete IPU-POD128 system or IPU-POD256 system. It is even possible to
connect IPU-POD256 systems together to build even larger systems and the Poplar SDK
tools can support these systems too. The developer can easily explore different
pipeline model parallel and tensor model parallel approaches to ensure that the highest
performance is achieved. Activations or weights required later in the model training
cycle can be offloaded to streaming memory and restored by Poplar later in the
computing cycle. Sometimes it might be better to store only a small sample of the
activations and then recompute the intermediate activations on the backward pass
when training a model. This can save memory bandwidth and allows the very high level
of compute available on IPUs to be used efficiently. This trade off can be used to
balance compute vs. bandwidth. Some models may require larger state with less
compute while other models may require larger compute activity on smaller state. This
trade-off may also vary across the model training cycle and so it is possible to maintain
a high level of control over the balance of compute and I/O bandwidth.

PHASED EXECUTION

Our Poplar SDK software takes a high-level model description from AI frameworks such
as TensorFlow or PyTorch and maps this highly abstracted graph representation into a
low-level compute graph that can then be compiled to run inside the IPU or across a
group of IPUs.

The Poplar SDK system not only builds the compute, but it also orchestrates all the
communication across the IPU exchange fabric that is inside each IPU processor and
the communication across the IPU-Links and IPU-Fabric that connect the separate IPUs
inside an IPU-POD system. Poplar also manages all the data storage and ensures that
the correct data is in the right place at the right time to support the next phase of
compute. This highly sophisticated approach is what makes it possible to scale large
models across all the IPU processors in an IPU-POD system and even to spread the
compute across multiple IPU-POD systems.

However, the Compute Graphs that Poplar produces can also be partitioned into
smaller sub-Graphs that can then execute in phases on the IPU. The sub-graph state is
moved in and out in background mode from the streaming memory, as the compute
passes across the whole graph. We call this Phased Execution.

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 7

A very simple example of the subgraphs used in phased execution, showing the
separate phases over the layers of a ResNet-50 model is shown below. The heat map
shows the executing part of the compute graph at each computing phase:

Simple example of phased execution across the layers of a ResNet-50 model

By controlling the size of the sub-graph the developer is able to take full advantage of
the large In-Processor Memory. Unlike a GPU which must constantly shuffle data
backwards and forwards from its connected memory, the IPU is able to hold large
amounts of state inside the processor and this approach dramatically reduces the
external memory bandwidth requirements allowing IPUs to take advantage of much
larger capacity DDR-DIMM modules. Graphcore CTO Simon Knowles provided a clear
description of the advantages of the IPU's In-Processor Memory during his talk at the
Hot Chips Conference 2021.

Phased Execution effectively provides an additional dimension of flexibility for
mapping large models to arrays of IPU processors.

LARGE MODEL MAPPING

IPU-POD128 and IPU-POD256 systems provide a rich set of resources that allow large
models with very large parameter counts, large activation state and complex optimiser
state, all to be supported. The extensive set of software features in Poplar SDK allow a
developer to map large models to these powerful computing platforms.

Models can be decomposed across a large number of IPUs to support fast training (see
diagram below). It is possible to pipeline the stages of a deep learning model across
IPUs connected in the p-axis. It is also possible to shard the model tensors across
multiple IPUs connected in the t-axis. The training data can then be split into
conventional data-parallel paths that are also commonly used on GPUs. This is the data
replica dimension, the r-axis. Associated with the data replica dimension we can use
streaming memory to access the model weight data. The weights for the whole model
can be split amongst the replicas for more efficient use of memory and then only
replicated for each phase of execution. We call this replicated tensor sharding (rts). The

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 8

optimiser state (momentum terms etc.) is accessed less often than the main weights so
we may spread these over a different number of replicas than the weights (rts’). In
addition to this parallel execution on a sub-graph, we can implement phased execution
across the layers of the model, optimising the size of the sub-graphs, to achieve high
levels of compute with all the state required for the sub-graph computation held inside
the large IPU In-Processor Memory.

Model decomposition across an IPU-POD

The total number of IPUs in any specific model decomposition is calculated as t*p*r. By
varying the level of model pipelining, tensor sharding and the data parallel dimension,
it is possible to build large models that efficiently use all the available compute and
memory resources in an IPU-POD128 or IPU-POD256 system.

Each IPU will use a proportion of weights given by 1/ (t * p) but the proportion of
weights stored in each IPU In-Processor Memory can be calculated as 1 / (t * p * rts)
given replicated tensor sharding. Phased execution can then be used to optimise the
proportion of weights that are available in each sub-graph and to optimise for the best
use of the IPU In-Processor Memory as well as to maximise the compute efficiency.

The global batch size is calculated as b * r where b is the replica batch size. The
developer can select an appropriate replica batch size to achieve the desired global
batch size for their model.

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 9

To understand this better we can look at a simple example of a BERT-Large model
mapped to a smaller IPU-POD16 system:

In this example we have chosen to pipeline the model over 4 IPU processors and not to
shard the tensors. A data parallel dimension of 4 was chosen to maximise the use of all
16 IPU processors in the IPU-POD16 system. If we expand the pipeline depth to a
dimension of 8, we can fit the whole model including all the optimiser state inside the
IPU In-Processor Memory on this single IPU-POD16 system and can achieve class leading
training performance and fine-tuning results as demonstrated by our MLPerf
performance results.

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 10

A more complex example is shown below, with a 175Bn parameter GPT-3 NLP model
mapped over an IPU-POD256 system.

Example of 175Bn parameter GPT-3 mapped to IPU-POD256

In this example, we have a much larger model that is now mapped over a single IPU-
POD256 system. We have chosen a pipeline model depth of 8 in this case, and we have
sharded the tensors across 8 IPUs for each pipeline stage. This gives a total of 64 IPUs
for each data replica in the data parallel axis and with the data parallel axis width set to
4 we can use all 256 IPU processors in the system. With a smaller GPT class model we
can fit all the weights inside the IPU In-Processor Memory but with 175Bn parameters
we take advantage of Phased Execution to split this larger model into a small number of
sub-graphs. With 96 layers in a GPT-3 model we can still use all the available In-
Processor Memory and all the compute resources efficiently. By expanding to more
sub-graphs implemented using Phased execution we can support even larger models
with trillions of parameters. To further reduce training time, we can also scale across
multiple, network-connected IPU-POD256 systems.

SUMMARY

We can see that IPU-POD systems can easily support today’s large AI models, including
GPT and beyond. IPU-POD systems can scale to support the largest models. However,
the extremely rich In-Processor Memory and much more highly parallel IPU processor
opens the opportunity to explore a much richer set of next generation large models.
Interesting areas of research are already being investigated on IPUs around sparse
models and Graph Neural Networks. We are looking forward to seeing the incredible
new breakthroughs that innovators will be able to achieve using the advanced IPU-
POD128 and IPU-POD256 systems.

Building Large Models on IPU Systems: Graphcore White Paper www.graphcore.ai 11

GET STARTED WITH THE IPU

Learn more about how Graphcore can accelerate your next machine intelligence
project.

TALK TO US

Get Started >

