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Abstract

This report focuses on the architecture and performance of the Intelligence
Processing Unit (IPU), a novel, massively parallel platform recently intro-
duced by Graphcore and aimed at Artificial Intelligence/Machine Learning
(AI/ML) workloads.

We dissect the IPU’s performance behavior using microbenchmarks that
we crafted for the purpose. We study the IPU’s memory organization and
performance. We study the latency and bandwidth that the on-chip and off-
chip interconnects offer, both in point-to-point transfers and in a spectrum of
collective operations, under diverse loads. We evaluate the IPU’s compute
power over matrix multiplication, convolution, and AI/ML primitives. We
discuss actual performance in comparison with its theoretical limits.

Our findings reveal how the IPU’s architectural design affects its perfor-
mance. Moreover, they offer simple mental models to predict an application’s
performance on the IPU, on the basis of the computation and communication
steps it involves.

This report is the natural extension to a novel architecture of a continuing
effort of ours [1, 2] that focuses on the microbenchmark-based discovery of
massively parallel architectures.






Chapter 1

Architecture

In this chapter, we introduce the reader to the fundamentals of the IPU’s ar-
chitecture and its programming paradigm.

1.1 Design Philosophy

The IPU architecture and its compute paradigm were co-designed from the
ground up specifically to tackle machine intelligence workloads. For that
reason, they incarnate certain design choices that depart radically from more
common architectures like CPUs and GPUs, and might be less familiar to the
reader. This section and the following ones discuss these choices and how
they affect applications and application designers.

At the heart of any IPU-based system is the IPU processor, of which we
offer a simplified block diagram in Figure 1.1. Its design aim is the efficient
execution of fine-grained operations across a relatively large number of par-
allel threads. This means that the IPU, unlike other massively parallel archi-
tectures (e.g., the GPU) adapts well to fine-grained, irregular computation that
exhibits irregular data accesses. The IPU offers true MIMD (Multiple Instruc-
tion, Multiple Data) parallelism and has distributed, local memory as its only
form of memory on the device.

Each IPU contains 1,216 processing elements called tiles; a tile consists of
one computing core plus 256 KiB of local memory. Except for the register file,
the IPU offers no memory other than the distributed memories local to each
tile.

In addition to the tiles, the IPU processor contains the exchange, an on-
chip interconnect that allows for high-bandwidth, low-latency communica-
tion among tiles.

Each IPU also contains ten IPU link interfaces; the IPU link is a Graphcore-
proprietary interconnect that enables low latency, high-throughput commu-
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Figure 1.1: Simplified block diagram of an IPU processor: the processor features 1,216 tiles
(each containing one core and its local memory), the exchange (an on-chip interconnect), IPU link
interfaces that provide connectivity to other IPU chips, and PCle interfaces for host connectivity.
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nication between IPU processors. Because IPU links make transfers between
remote tiles as simple to the programmer as between local tiles, they are the
linchpin to the IPU paradigm’s scalability. Finally, the IPU contains two PCle
links for communication with CPU-based hosts.

Terminology. While Graphcore’s commercial literature uses the terms IPU-Tiles™,
IPU-Core™, IPU—ExchangeTMand IPU-Links™, we refer to the same components as
tiles, core, exchange and IPU links, respectively, with no risk of confusion.

Source. Information we report here on IPU architecture derives from Graphcore’s tech-
nical literature or from direct correspondence with Graphcore, and is republished with
permission.

1.2 Fine-grained Parallelism

The IPU’s emphasis on fine-grained parallelism means that the IPU can effi-
ciently run applications that have irregular and sparse data access patterns
and control flow. Unlike SIMD/SIMT architectures, IPUs don’t need large
warps of threads consuming contiguous vector data to achieve high efficiency.
Instead, IPUs can run individual processing threads on smaller data blocks,
in a highly parallel MIMD fashion. Each thread can have completely distinct
code and execution flow without incurring performance penalties.

Architecturally, IPUs differ significantly from platforms commonly used
to execute ML/AI workloads, namely CPUs and GPUs. We discuss those
differences by comparing the fundamental approaches behind the design of
CPUs and GPUs with those behind IPUs.

CPUs

CPUs tend to offer complex cores in relatively small counts. CPU cores fea-
ture sophisticated latency-reducing techniques like branch prediction, branch
speculation, and out-of-order execution. These optimizations make CPUs ex-
cel at single-thread performance and control-dominated code, possibly at the
expense of energy efficiency and aggregate arithmetic throughput per area of
silicon.

Even if most modern CPUs offer vectorization (SIMD, Single Instruction,
Multiple Data), they can’t match GPUs in aggregate floating-point arithmetic
or in energy efficiency (performance per Watt) on large, regular, array-based
workloads.

To hide memory latency, CPUs typically employ a deep memory hierarchy
containing multiple levels of caches, together with prefetching and sophisti-
cated prefetch predictors.

GPUs
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GPUs, in contrast, feature smaller cores in a significantly higher count per
device (e.g., thousands). GPU cores are architecturally simpler than those of
CPUs and do not typically offer branch speculation, sophisticated branch pre-
diction, out-of-order execution, or hardware prefetching.

GPUs arrange their cores into clusters that operate in lockstep; all cores in a
cluster execute the same instruction at any point in time. Threads are grouped
together in warps; warps are scheduled together to clusters. Threads in a warp
will perform the same operation on independent data. This execution model
is referred to as SIMT: Single Instruction, Multiple Threads.

Even though GPUs have evolved deep memory hierarchies featuring both
cache and scratchpad memories [1, 2], their fundamental approach to hiding
memory latency remains the oversubscription of threads to cores and the abil-
ity to inexpensively switch among threads. In this approach, when a warp of
threads is awaiting operands from main memory, the hardware can suspend
them and switch to another warp that has received its operands from memory
and is ready to continue. The programming model explicitly encourages de-
velopers to expose sufficient thread parallelism so that a portion of the threads
are always ready to execute, while the remainder await operands.

GPUs only access main memory at peak throughput when load/store op-
erations within each warp involve contiguous regions of memory; that access
is said to be coalesced. Uncoalesced memory accesses only achieve a fraction
of the theoretical peak memory bandwidth. For best performance, developers
must instantiate large blocks of threads that share the same program, attempt
to consume input data (and produce output) in a coordinated, coalesced man-
ner, and use control flow sparingly. Because of the SIMT model, GPUs pay a
performance penalty when threads diverge in their control flow.

Because of their organization, GPUs excel at regular, dense, numerical,
data-flow-dominated workloads that naturally lead to coalesced accesses and
a coherent control flow. On these workloads, GPUs also tend to be more en-
ergy efficient than CPUs because they dedicate a higher fraction of their silicon
to arithmetic units, rather than caches and latency-oriented features. More-
over, GPUs refactor instruction decoding circuitry outside of individual cores;
this is possible because clusters of cores operate on the same instruction.

IPUs

IPUs provide large core counts (1,216 per processor) and offer cores com-
plex enough to be capable of executing completely distinct programs. The
IPU’s approach to reducing memory latency is radical—it does away with
shared memory entirely. The IPU only offers small, distributed memories that
are local and tightly coupled to each core. Each tile contains 256 KiB of mem-
ory, totaling 304 MiB per device.

IPU memories are scratchpads, not caches. They are implemented as



1.3. ARITHMETIC THROUGHPUT 11

SRAM and therefore offer much higher bandwidth (45 TB/s, aggregate) and
lower latency (6 clock cycles) than DRAMs. Their performance is compara-
ble to L2 CPU caches and superior to GPU shared memories (or L1 caches).
Section 1.4 extends our discussion on memory.

IPU cores pay no penalty when their control flows diverge or when the
addresses of their memory accesses diverge. In fact, they pay no penalty for
running disjoint instruction flows that exhibit uncorrelated memory accesses.
Cores access data from their respective local memory at a fixed cost that is
independent of access patterns. This makes IPUs more efficient than GPUs at
executing applications with irregular or random data access patterns and/or
applications that are control-flow dominated, provided that working sets fit
in IPU memory.

Similarly to CPUs and GPUs, IPUs achieve higher efficiency by oversub-
scribing threads to cores. Specifically, each IPU tile offers hardware support
for 6 threads in a manner that is functionally similar to the SMT technique (Si-
multaneous MultiThreading, or Intel’s Hyper-Threading) commonly found
on CPUs. Each IPU tile maintains 6 resident execution contexts and multi-
plexes them onto shared resources, thus hiding instruction latencies (depen-
dency, memory access and branch latencies), reducing corresponding pipeline
stalls, and increasing aggregate throughput. Each tile rotates among threads
according to a static, round-robin schedule. The entire IPU supports therefore
6 x 1,216 = 7,296 threads. For maximum occupancy, software designers are
encouraged to instantiate that many threads.

On the IPU, efficiency on irregular workloads does not come at the ex-
penses of regular, numerical, array- or matrix-based workloads, which are
known to run well on GPUs. In the next section we show that IPUs outper-
form GPUs on a per-board comparison when operands fit in memory.

1.3 Arithmetic Throughput

The IPU offers an impressive arithmetic throughput, up to 31.1 TFlops/s in
single precision and 124.5 TFlops/s in mixed precision' per chip, surpassing
contemporary GPUs in a comparison of theoretical limits.

In a per-board comparison, the IPU’s theoretical advantage over the GPU
grows roughly by a factor of two, and so it does in an energy efficiency com-
parison.

This level of throughput is made possible by the use of specialized
pipelines called Accumulating Matrix Product (AMP) units that are present in
each IPU tile. AMP unit are used to accelerate matrix multiplication and con-

IWith mixed precision we denote operations in which multiplicands are in half precision (FP16)
and their products are accumulated onto a single precision result (FP32).
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volution operations. An AMP unit can finish 64 mixed-precision or 16 single-
precision floating point operations per clock cycle.

However, actual arithmetic performance, both on IPUs and GPU, depends
dramatically on the properties of the specific numerical workload at hand,
and may significantly differ from theoretical limits. Evaluating the IPU’s arith-
metic performance on a meaningful basket of real-world numerical workloads
is far outside of the scope of a microbenchmarking report like this. However,
we benchmark matrix multiplication performance as offered by Poplar’s lin-
ear algebra library (poplin) and we compare them with theoretical limits, and
with respective performance numbers associated with NVidia’s V100 GPU.

The actual performance we measured shows the IPU as a clear winner in
single precision against NVidia’s V100 GPU (per-chip comparison). In mixed
precision, the comparison does not yield a clear winner and requires a more
nuanced discussion. We postpone this discussion, together with experimental
setup details and quantitative results to Section 5.1, which is entirely dedi-
cated to the matrix multiplication workload.

1.4 Memory Architecture

In the IPU’s fine-grained processing philosophy, the role of local memories is
fundamental. In fact, the very choice to adopt distributed SRAM memories
located next to the cores is what allows threads to access data efficiently even
when access patterns are irregular, sparse and incoherent at a fine grain.

Each tile contains 256 KiB, totaling 304 MiB on the entire processor. Each
tile owns an independent, contiguous 21-bit address space that is shared
among the 6 hardware execution contexts, where code executed locally and
data processed locally must fit. The nominal aggregate bandwidth for the
entire IPU memory is 45 TB/s, while the latency is 6 clock cycles.

While the IPU’s aggregate capacity is lower than the typical DRAM mem-
ory on a GPU (e.g., 32 GiB), IPU memories make up in speed what they lack
in capacity; they have shorter latency than both L1 caches and shared mem-
ories on the NVidia Turing T4 GPUs, and comparable latency with L2 caches
on Intel Skylake/Kaby Lake/Coffee Lake CPUs. See Table 1.1 for a quantita-
tive comparison between IPU memory and SRAM memories with comparable
latency on GPUs and CPUs.

As far as capacity is concerned, the aggregate IPU memory is larger than
memory layers of equivalent latency on CPUs and GPUs, surpassing them by
one to two orders of magnitude (see column Per-chip Capacity in Table 1.1). The
aggregate size of the IPU’s memory removes the need for a cache hierarchy
similar to those found on GPUs and CPUs.

We dedicate the entirety of Chapter 3 to studying the performance of the
IPU’s local memory, which we measure via microbenchmarks.
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Architecture Memory Per-chip Latency Latency Clock
Capacity (ns) (cycles)  Frequency
(MiB) (GHz)
Graphcore IPU Tile-local 304 3.75 6 1.60
NVidia T4 GPU  Shared 125..25 11.94 19 1.59
L1 125..25 20.13 32
Intel *-Lake CPU  L1D 0.25..0.875 0.93..1.92 4..5 2.60 ... 4.30
L2 4..28 2.79 ... 4.62 12

Table 1.1: Size and latency comparison between IPU memories and similar SRAM-based mem-
ory hierarchy levels on contemporary GPUs and CPUs. The IPU’s local memory has lower latency
than the fastest memories on the Turing GPUs and is on par with the L2 cache in modern Intel
CPUs. However, the IPU’s local memory is vastly larger than those memories in a per-chip com-
parison. (Intel data: from public sources; intervals range over the product offering at the time of
the writing. GPU data: from our prior work [2].)

The IPU’s memory organization requires software designers to partition
their working set across the tiles” memories appropriately and make tiles ex-
change data with each other when they need non-local operands. The pro-
gramming model, along with Graphcore’s Poplar language and associated
compiler, allows for the automatic orchestration of these data transfers. De-
signers describe the operands’ flow but need not worry about explicit variable
placement and transfer scheduling. Transient data that is only consumed once
should be streamed into the device via PCI from the host.

Graphcore’s optimized machine-learning and linear algebra libraries
adopt the data partitioning approach we described. Performance-sensitive
software designers are encouraged to follow it as well.

The cumulative memory of 304 MiB per IPU (608 MiB per board) is typi-
cally sufficient for many models used in contemporary AI/ML applications to
reside entirely on-chip. Models that fit entirely on chip benefit from the high
bandwidth and low latency offered by local memory. Models of larger size can
be sharded across IPU processors and IPU boards, thanks to the architectural
and programming paradigm features described in the next section.

1.5 Interconnect Architecture

The IPU interconnect is what allows tiles on an IPU system to work tightly
together and exchange data efficiently with each other. It is also what truly
makes a system with multiple IPUs act as a single, coherent machine.

A system with multiple IPUs exposes the single IPU devices indepen-
dently, but it also exposes Multi-IPUs. A Multi-IPU is a virtual IPU device
that is comprised of multiple physical IPUs and offers all their memory and
compute resources as if they belonged to a single device. The ability to feder-
ate multiple physical IPUs into a virtual, monolithic device is precisely what
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allows users to train and infer models larger than a single IPU’s capacity, while
also taking advantage of the cumulative compute power. Software designers
can scale their applications to multiple IPUs with no additional development
effort because the same APIs can target physical IPUs or Multi-IPUs indiffer-
ently. The tight cooperation between on-chip exchanges and IPU links is the
crucial factor that allows Multi-IPUs to exist and put the cumulative memory
capacity and compute resources of its participants at the developer’s disposal.

To study the IPU’s on-chip and off-chip interconnect performance, we
adopt the terms, the methods and the interests of classic research focus-
ing on the characterization of parallel systems and high-performance net-
works [3, 4, 5, 6].

On chip, the interconnect exhibits an impressive aggregate throughput
of 7.7 TB/s (actual). We measured this throughput under load, with all
tiles transferring data concurrently to randomly selected destinations, with
a benchmark that is representative of all-to-all exchanges (Section 4.1.6). On a
per-tile basis, each of the 1,216 tiles can simultaneously use 6.3 GB/s of band-
width to transfer data to an arbitrary destination on chip. The latency of an
on-chip tile-to-tile exchange is 165 nanoseconds or lower and does not de-
grade under load above that value.

In multiprocessor systems, the exchange and the IPU links work together
to support tile-to-tile communication transparently to the user, regardless of
where in the system the two endpoints are located; it is as easy to program a
Multi-IPU as it is a single, physical IPU.

Each board is connected to peer boards via IPU links and to its host sys-
tem via PCle interfaces. The 2 IPUs on each board are connected by three
links with a nominal bidirectional bandwidth of 64 GB/s each, two of which
reserved for intra-board transfers. Our benchmarks achieved an actual band-
width of 108 GB/s.

Connecting boards in an IPU-link network is the key to building larger
IPU-based systems. While our study is limited to a single-host configuration
featuring 8 boards, much larger systems can be built, including hostless sys-
tems. They are beyond the scope of this report. Although different network
topologies are possible, our experimental evaluation focuses on the concrete
configuration adopted in the test system provided to us by Graphcore; we
describe it in detail in Chapter 2.

Then, we dedicate the entirety of Chapter 4 to the study of the IPU’s inter-
connect performance, both on chip and across chips.

In summary, we remark two general observations:

o performance: the aggregate arithmetic resources of the virtual IPU scale
linearly, and the overall interconnect performance scales relatively well.
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For example, communication latencies degrade gracefully with system
diameter, as our benchmarking results show in Sections 4.1.1 and 4.1.3;

e programmability: the Multi-IPU programming model is transparent to
the developer. The underlying hardware makes the abstraction efficient
and, in practice, no extra development effort is needed to scale applica-
tions onto large IPU systems. In contrast, CUDA applications do require
extra development effort and complexity to parallelize across multiple
GPUs, and even more to parallelize across hosts. The same is true for
CPU parallel applications, especially across hosts.

1.6 The Bulk Synchronous Parallel Model

An important design factor that underlies the IPU programming paradigm is
the Bulk Synchronous Parallel (BSP) model [7]. BSP is the very approach that
IPUs use to organize their compute and exchange operations.

Proposed in the 1980s, the BSP model is an abstraction for parallel com-
putation that facilitates expressing parallel algorithms and reasoning on the
performance they achieve as they execute on parallel computers.

The BSP model organizes computation in multiple sequential supersteps; a
superstep is composed of a local computation phase, followed by a commu-
nication phase and a barrier synchronization:

e in the local computation phase, every process performs computation
that operates solely on local memory. No communication between pro-
cesses occurs in this phase;

e in the communication phase, processes exchange data; each process
may send a message to each desired destination counterpart (all-to-all
personalized exchange). No computation occurs in this phase;

e a barrier synchronization phase follows; no process continues to the
next superstep till all processes have reached the barrier. Neither com-
putation nor communication occurs in this phase except for that strictly
required by the barrier itself.

Processes can use the communication phase not only to send each other
intermediate computation results, but also to request and (at a later commu-
nications stage) receive data from remote memories. This mechanism allows
each process to use any other’s local memory as a remote memory and to ul-
timately access the entire aggregate system memory as one larger store.

Parallel algorithms of arbitrary complexity can be described in the BSP
model without restriction of generality.
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The IPU is a true BSP machine. It faithfully incarnates hardware support,
enforcement and optimization for the three phases of each BSP superstep. Its
programming model lets programmers specify processes in terms of graph
vertices that compute on local data (and local data only).

Input operands are brought to each process by the run-time system be-
fore the computation begins, in the communication step associated with the
previous superstep.

The programming model and the hardware jointly enforce the separation
between phases:

o IPU cores can only access directly local memories; this organization nat-
urally enforces the local restriction of the computation phase;

o the on-chip exchange provides native hardware support and accelera-
tion for the all-to-all exchanges of the communication phase ...

o and for the barrier synchronization as well.

In the IPU paradigm supported by the Poplar SDK, programmers describe
computation as vertices, data as tensors and data exchanges as static edges,
without having to worry about allocation of data at rest in local memories, al-
location of input/output transfer buffers, or scheduling of transfers. All these
tasks are carried out by the Poplar compiler. The compiler organizes the pro-
cessing of machine intelligence models exclusively using this BSP paradigm.

Because the IPU implements the BSP model using its exchange and IPU
links, the interconnect’s performance is the primary factor that determines
the performance of BSP communication and synchronization phases and ul-
timately affects overall application performance. We dedicate Chapter 4
to study the performance of intra- and inter-IPU transfers via benchmarks.
Those benchmarks are, in fact, compiled into and executed as BSP communi-
cation and barrier synchronization phases.



Chapter 2

Experimental Setup

In this chapter, we specify the experimental system setup we use in our bench-
marks. Of particular interest to the reader is the IPU link network topology,
which determines the IPUs’ relative proximity to each other and influences
the performance of data transfers across IPUs.

2.1 System Configuration

All results in this report derive from benchmarks that we ran on a test system
provided by Graphcore and equipped with 8 Graphcore C2 PCle boards. Each
C2 board hosts 2 IPU processors running at 1.6 GHz. While this test system
was configured for 1.6 GHz IPU operation, production systems may differ in
configuration and performance; contact Graphcore directly for inquiries.

We show a simplified representation of the server’s topology and its con-
nections in Figure 2.1. The system features two Intel Xeon Platinum 8168
CPUs, each containing 24 cores, with 33 MiB of L3 cache and a clock frequency
of 2.70 GHz.

IPUs are connected to each other via IPU links, organized in a ladder net-
work (thin and thick blue arrows in the figure). The network topology directly
explains the interconnect performance that we measured (Chapter 4).

In this ladder-shaped topology,

e each vertical “side rail” represents one single-link chain connecting ei-
ther all even or all odd IPUs; each such link has a nominal 64 GB/s
bandwidth;

e each horizontal “rung” (thick, horizontal, blue arrow) represents a
triple-link, bundled connection between the two IPUs on each C2 board.
The three links offer a nominal bidirectional bandwidth of 64 GB/s each,
or 192 GB/s aggregate.

17
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Legend
<4—>»  x161PU-Link 64 GB/s
<+ 3x x16 IPU-Link 192 GB/s
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Figure 2.1: Topology and interconnection of C2 boards and IPU processors in the system that we
employed in all our experiments. All IPU numbers in this figure are Device IDs. Board placement
in the chassis is depicted accurately (see Fwd and Aft arrows).
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The routing of traffic along the bundled on-board IPU links is statically
configured so that:

o two links are reserved for data transfers where the two IPUs on a board
are the source and destination; this yields a 128 GB/s nominal aggregate
bidirectional bandwidth between the two IPUs of each board;

e one link is reserved for pass-through transfers, where either the source or
the destination IPU belongs to another board and has a different parity.

In the topology, each board has exactly two neighbors, with the exception
of the first and last boards, which only have one neighbor. Each IPU is con-
nected directly to the other IPU on the same C2 board and up to two other
IPUs located on neighboring boards. For example, IPU1 is connected directly
to IPU3 (on the same board), and to IPUO and IPU6 (on different boards). [IPUO
is not directly connected to IPU3; each data transfer from IPUO to IPU3 uses
either IPU1 or IPU2 as a relay.

For the avoidance of doubt, the ladder structure is not a torus, i.e., it does
not wrap around at the edges. The card hosting IPUs 7 and 5 is not a neighbor
of the card hosting IPUs 8 and 10. A transfer from IPU7 to IPU8 must traverse
the entire ladder vertically.

All the IPU numbers we use here are Device ID numbers as exposed and
used by the Poplar SDK and by the IPU’s command-line tools. Device IDs re-
flect the lexicographic order of the respective devices’ PCI domains, not their
physical placement in the server. For these reasons, Device IDs do not respect
proximity in the network topology. IPUs with consecutive Device IDs are not
on the same board or, in general, neighbors. For example, consider IPU pair
7 and 8. On the other hand, Poplar provides a mapping (DNC IDs) that ac-
counts for the IPU’s network proximity. We discuss that in the next section.

Our microbenchmarks reveal that proximity matters. Specifically, tile
proximity directly affects the latency between pairs of tiles in on-chip com-
munication, and network proximity between IPUs directly affects inter-IPU
latency.

Neighboring IPUs experience the lowest round-trip latency when commu-
nicating with each other, whereas marginal latency increases progressively
when the endpoint IPUs are farther and farther away. For example, the two
IPUs on a board can typically perform a minimum data transfer in 0.63...0.83
microseconds, and two neighboring IPUs of same parity can perform a trans-
fer in 0.54...0.77 microseconds; any addition hop costs on average 0.16 mi-
croseconds (varying between 0.145 and 0.174); we present these results in Sec-
tion 4.1.3 and Figure 4.4. IPUs 7 and 10 are the farthest pair and experience a
latency of approximately 1.76 microseconds.
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Figure 2.2: Detailed tile layout within an IPU processor, including tile numbering. The logical
tile IDs depicted are those exposed to the programmer. Tiles topologically close to each other
actually experience shorter communication latencies than tiles farther away (see Section 4.1.2).
Source: direct communication with Graphcore.

On the other hand, peak bandwidth between two endpoint IPUs is not
affected by their proximity (Figure 4.6) as the topology suggests. Also in ac-
cordance with topology are our findings on bidirectional communications be-
tween the IPUs on each board: we achieved 108 GB/s, or 84% of the nominal
peak bandwidth (Section 4.1.6, Table 4.6). We find that monodirectional band-
width achieves almost exactly half that much bandwidth.

The cursory results we just listed are only examples of our findings; the
next chapter is entirely dedicated to studying the IPU’s interconnect perfor-
mance in diverse communication patterns and under different loads, as mea-
sured with our benchmarks.

Tile numbering. The on-chip interconnect among tiles within an IPU is
represented in Figure 2.2, where the actual logical tile ID numbering is shown.
Tiles are arranged in columns containing 76 total tiles. These 76 tiles are or-
ganized in 19 islands containing four tiles each. Our benchmarks shows that
proximity affects latency and that neighboring tiles within the same island
experience a marginally shorter latency between each other than tiles fur-
ther away within the same column. Tiles in different columns experience a
marginally higher latency.

A developer who is strongly focused on latency could, at the extreme,
manually place compute vertices on tiles in order to take advantage of the
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respective proximities.

2.2 Multi-IPUs

This section discusses how the platform groups physical IPUs into virtual
Multi-IPU devices and how IPU tiles are numbered within each Multi-IPU
device. All details reflect the concrete configuration of the Graphcore evalua-
tion system we benchmarked.

On our evaluation system, the drivers and SDK expose the exact set of
Multi-IPU devices of Figure 2.3. Each Multi-IPU possesses a unique Device
ID; their numbering resumes from where physical ID numbering ends. On
our system, the highest-numbered physical IPU has Device ID 15, and the
first Multi-IPU (virtual) has Device ID 16.

For performance reasons, Multi-IPU are constructed only out of neighbor-
ing IPUs and only in powers of two (2, 4, 8, and 16 IPUs). All 2-IPU devices
contain a pair of IPUs residing on the same board. For example, IPU16 con-
tains IPU7 and IPU5. All 4-IPU devices contains the IPU from a pair of C2
cards that are neighbors in the ladder network topology, and so on.

Multi-IPUs correspond to partitions of the following sequence of Device
IDs into equally-sized, contiguous sub-sequences with power-of-two lengths:

57,46,31,2,0,13,15,12, 14,9, 11, 10, 8.

Trivially, this sequence corresponds to a front-to-back, left-to-right enumera-
tion of IPUs in the chassis. For the complete avoidance of doubt, chassis front
and back are denoted in the picture by the Fwd and Aft arrows, whereas left
and right are as seeon by an observer placed at the back of the chassis and
looking forward (Fwd direction).

Within each Multi-IPU device, the run-time numbers IPUs according to
the sequence just reported. This 0-based index of each physical IPU within a
Multi-IPU is called a DNC ID. For example, IPU16 is composed of IPUs 5 and 7
(5 and 7 are their Device IDs); their DNC IDs are trivially 0 and 1, respectively.
Consider IPU30, the device containing all IPUs in the system, whose Device
IDs are 5, 7, 4, 6 ... 10; their respective DNC IDs are 0,1,2,3 ... 15.

To avoid confusion between Device IDs and DNC IDs, the reader only

needs to remember that:

e Device IDs reflect PCI device numeration; consecutive Device IDs do
not indicate IPU proximity;
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Figure 2.3: Topology of Multi-IPU virtual devices (depicted in red) with respect to the physical
IPUs (in black). All numbers are Device IDs. For example, IPU16 is a virtual device containing
physical IPUs 5 and 7. IPU30 is a virtual device containing all 16 physical IPUs in the server.
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o DNC IDs reflect actual IPU proximity in the IPU Link topology; consec-
utive DNC IDs denote IPUs that are close to each other.

DNC IDs matter to the final user because they also reflect the order in
which tiles are ordered within the Multi-IPU. Tiles are ordered sequentially
according to the DNC IDs: tiles 0...1,215 belong to IPU with DNC ID 0, tiles
1,216 ... 2,431 belong to DNC ID 1, and so on.

A user employing a different system than the one we evaluated can ob-
tain an explicit enumeration of all IPU devices (physical, and virtual) and
their topology, including DNC numbering, by using command line tool gcinfo

—--list-all-devices.

2.3 Methods

Software SDK version. At the time this report is written, the IPU is a novel
architecture and Graphcore is refreshing its Poplar SDK and its IPU drivers
with relative frequency. Because subsequent releases include incremental op-
timizations, the choice of any one SDK version in conjunction with a bench-
mark affects the benchmark’s performance results. We used SDK version
1.0.49. Researchers intending to duplicate our results should employ the same
version.

Whenever meaningful, we timed the latency of each operation with care
for the following concerns:

e Single-IPU measurements. In benchmarks involving a single IPU,
we timed operations on the IPU, via the cycle-accurate primitive
popsys: :cyclestamp (). The use of this primitive isolates measurements
from CPU-IPU communication overheads and IPU program launch
overheads.

e Multi-IPU measurements. Benchmarks involving multiple IPUs can
not practically use popsys::cyclestamp (). We time them instead from
the host system. We time multiple iterations of each benchmark in order
to amortize overheads, making their impact negligible. To remove spu-
rious overhead between one iteration and the next, we use the Poplar
primitive program: :Repeat (), which excludes the host from having any
role in the repetition.

o Warm up. Whenever we desire steady-state measurements, we take ap-
propriate countermeasures to exclude warm-up overheads from the re-
sults. For example, whenever benchmarks involve the host, we typically
execute an untimed warm-up iteration of the benchmark before we start
timing.
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Units. In this paper we prefer harmonized ISO/IEC 80000-13:2008 standard
to denote data sizes and capacities: 1 KiB = 1,024 bytes; 1 MiB = 1,024 KiB; 1
GiB =1,024 MiB; 1 TiB = 1,024 GiB. When units of capacity are used to express
throughputs, we use customary 1,000-based prefixes (k,M,G, T —thus, kB/s,
MB/s, GB/s, TB/s) for consistency with the literature and ease of calculation.



Chapter 3

Local Memory

We start our analysis from the basic constituents of an IPU system and pro-
ceed outward. In this chapter, we focus on the performance of the memories
located within each tile.

On an IPU, each tile possesses 256 KiB of memory that it can access directly
via instructions. (For a tile to access memory that is local to another tile, it
must use the exchange; we characterize the exchange’s performance in the
next chapter.)

We find that the performance of each local memory is fixed (6 cycles la-
tency, 31.1 TB/s aggregate peak read bandwidth); local memories are com-
pletely decoupled from each other, in function and performance, as architec-
tural considerations suggest. Pressure on the local memory in one tile does
not affect memory performance in any other tile.

3.1 Latency

The latency experienced by a tile reading a value from its local memory is 6
clock cycles. Our experiments show that this latency is fixed and does not
depend on access patterns, stride, working set size, number of threads used
on each tile (1 ... 6), number of concurrent tiles running the same benchmark
simultaneously, or size of the target working set accessed by the benchmark.

A minimal benchmark suitable to demonstrate latency invariance follows,
courtesy of Graphcore. The code implements a pointer chase that scans an
array of configurable size. The array is pre-populated with indices that realize
a linked-list visit with configurable stride.

template <const int unroll_ factor>
class PChaseVertex : public poplar::Vertex ({

public:
poplar::Input<Vector<uint32_t>> in;
poplar::Input<uint32_t> start;
poplar: :Input<bool> flag;

25
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poplar: :Output<uint32_t> out;

bool compute () {
uint32_t index = start;
for (int 1 = 0; i < unroll_factor; i += 1)
index = in[index];
if (flag)
*out = index;
return true;
}
}i

template class PchaseVertex<1000>; // explicit instantiation

In the listing, variable f1ag presents the compiler with a possible side ef-
fect; its purpose is to prevent the compiler from detecting the entire bench-
mark as dead code and optimizing it out.

Experimental results confirm that neither size nor stride affect memory
access latency.

3.2 Bandwidth

We measure the aggregate read bandwidth available to user code on the entire
IPU and compare it with theoretical limits derived from hardware specifica-
tions (31.1 TB/s). We achieved bandwidths closely matching theoretical val-
ues only with a benchmark written in assembly language containing a zero-
overhead loop of 128-bit loads. Experiments show that Poplar load-dense
code with narrower loads, 32- and 64-bit wide, access roughly a quarter and
half of the theoretical bandwidth, respectively. Code with lower-than-perfect
load instruction density may achieve even lower bandwidth. However, naive
code consisting of array-based, single-precision read loops without hand opti-
mizations emits relatively dense 32-bit loads, achieving a quarter of the theo-
retical limit. Finally, we show how developers can use the f1oat2 vector types
to increase access width, roughly doubling their bandwidth, without resorting
to assembly code. All these results are presented in detail in this section.

Theoretical limit. The theoretical aggregate read bandwidth derives from the
following assumptions: each tile can read 16 bytes per clock cycle, the clock
frequency is 1.6 GHz, and the tile count is 1,216. The result, 31.1 TB/s, is the
product of these three factors. (Top row in Table 3.1.)

Multi-threading. All benchmarks in this section use six identical threads per
tile in order to achieve complete hardware thread occupancy. Using a smaller
amount of threads yields proportionally lower bandwidth.

Naive code. To measure the performance limits of loop-based code written
in Poplar/C++, we use a benchmark specifically designed to generate long
sequences of load instructions. This benchmark delivers 7.59 TB/s, roughly
a quarter of the theoretical limit. (Bottom row in Table 3.1.) Real-world user



3.2. BANDWIDTH 27

Approach Language Load width Bandwidth  Fraction of

(bits) (TB/s)  Theoretical
Theoretical limit - 31.13 100 %
Best actual assembly 128 30.70 98.6%
float2 Poplar 64 15.30 49.2%
64-bit loads assembly 64 15.26 49.0%
float4 Poplar 64 15.02 48.3%
Naive, float (upper limit) Poplar 32 7.59 24.4%

Table 3.1: Theoretical and actual aggregate read bandwidths available on the entire IPU chip, as
measured via diverse benchmarks written in assembly or in Poplar.

code will see even lower performance than 7.59 TB/s if it exhibits a lower
load instruction density. An excerpt of the benchmark source code follows,
courtesy of Graphcore.

#define UNROLL 256

class AccaddVertex32 : public poplar::Vertex {

public:
Input<Vector<float>> in;
poplar::Input<uint32_t> size;

bool compute () {
for (int i = 0, e
float* base = &i

= size ; 1 < e; i += UNROLL) {
n[il;

#pragma unroll UNROLL
for (int j = 0; j < UNROLL; j++)
asm volatile ("" :: "r"(base[j]));
}
return true;
}
bi

The listing contains the array-based loop, with an inner loop containing
an inline assembly block accompanied by an unroll pragma directive. The
inner loop instructs the compiler to generate an unrolled sequence of load
instructions.

We verify by inspection that the corresponding emitted code contains an
unrolled sequence of 256 load instructions, each 32-bit wide.

Best actual bandwidth. To determine the absolute highest bandwidth achiev-
able by user code, we benchmark hand-written assembly code that features
zero-overhead loops of 128-bit wide memory accesses. The details of this code
are beyond the scope of this document. It achieves a bandwidth closely match-
ing the theoretical: 30.7 TB/s, or 98.6% of the theoretical limit. (“Best actual”
in Table 3.1.) We know of no other means to emit 128-bit load instructions
than resorting to assembly.

Vector types. Applications loading 32-bit words can achieve the higher 64-bit
bandwidth by loading two words at a time if the source data is contiguous.
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This avenue benefits developers who desire higher performance but are not
willing to write assembly code. They can instruct the compiler to generate
wider loads by using vector type ficat2 and explicitly aligning their input
arrays, as we illustrate in the listing below. Vector type f1oat2 expresses an
array of two 32-bit floating point values intended to be handled together by
the hardware. This code will emit 64-bit load instructions and achieve the
same performance as a hand-written assembly loop of 64-bit loads (rows la-
beled “float2” and “64-bit loads” in Table 3.1), which is roughly half of the
theoretical limit.

#define UNROLL 256

class AccaddVertex64 : public poplar::Vertex {

public:
Input<Vector<float, VectorLayout::SPAN, 8>> in;
poplar::Input<uint32_t> size;

bool compute () {
float2 xf2in = reinterpret_cast<float2 *>(&in[0]);
for (int 1 = 0, e = size / 2; 1 < e; i += UNROLL)
float2+ base = &f2in[i];
#pragma unroll UNROLL
for (int j = 0; Jj<UNROLL; j++)
asm volatile("" :: "r"(base[j]));

{

}
return true;
}
i

The crucial aspects of this listing are the alignment directives associated with
input tensor in and the reinterpret_cast<> syntax necessary to access in via
vector type float2. The inline assembly loop at the bottom is not part of the
technique we propose, and it is just intended to achieve perfect load instruc-
tion density (forcing the compiler to generate an unrolled sequence of load
instructions), as in an example we presented earlier.

This vector type approach does not extend to £1o0at4, which does not cause
the compiler to emit 128-bit loads. We find that a benchmark based on f10at4
roughly achieves the same performance as the code just illustrated (“float4”
in Table 3.1). We omit its listing.

Sensitivity to block size. We show how the aggregate local memory band-
width seen by a workload varies according to the size of blocks it accesses.
Our benchmark scans a block of configurable size. We instantiate the work-
load six times per tile to optimally occupy the six hardware threads. We vary
block sizes from a single word to 200 KiB, which is close to the user-available
capacity. Our results are in Figure 3.1; for sufficiently large blocks, the band-
width saturates smoothly. Accessing memory in blocks of 8 KiB is sufficient
to achieve 95% of peak bandwidth.

No congestion occurs as more and more tiles use the respective memories.
This finding is consistent with the operation of completely distributed local
memories.
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Figure 3.1: Aggregate local memory bandwidth on the entire IPU as a function of block size.

Write bandwidth. The theoretical limit is 15.5 TB/s, derived from each tile’s
ability to write 8 bytes per clock cycle. Naive, array-based, single-precision
write loops achieve the same performance as the corresponding read loops
(“float poplar”) in Figure 3.1. That code benefits from the use of vector types
in the same manner as illustrated above and with the same performance ben-
efits. The following listing, courtesy of Graphcore, illustrates how to instruct
the compiler to emit 64-bit wide, aligned write instructions for single precision
(32-bit) elements.

#define UNROLL 8
using namespace poplar;

class AccaddVertex : public poplar::Vertex ({
public:
Input<Vector<float, VectorLayout::SPAN, 8>> in;
// Request 8-byte alignment (SPAN) for variable ‘in’

poplar::Input<uint32_t> size;
poplar: :Input<bool> flag;
poplar: :Output<float> out;

bool compute () {
float2 xf2in = reinterpret_cast<float2 *>(&in[0]);
float tmp = 0.0;
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// loop limit is size/2 because each element consists of 2 floats
for (int 1 = 0; i < size/2; i+= UNROLL ) {
float2 tmps[UNROLL];
#pragma unroll UNROLL
for (int j = 0; j < UNROLL; j++)
tmps[j] = f2in[i+3];
if (flag)
for (int j = 0; j < UNROLL; j++)
tmp += tmps[Jj]1[0] + tmps[3][1];
}

if (flag)
*out = tmp;
return true;
}
}i

Using an unroll factor equal to 8 achieves the highest bandwidth. This code
achieves the same bandwidth as the corresponding code that we illustrated
above for array reads.
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Interconnect

We evaluate the IPU interconnect’s performance by benchmarking point-to-
point and collective operations. We analyze whether and how latency and
bandwidth degrade as the scale of the communication operation increases,
involving on-chip and off-chip interconnects.

We selected a sufficiently broad set of primitives for benchmarking that
represent communication patterns commonly found in parallel applications.
Our results are intended to help software designers derive early performance
estimates for their applications.

Our choice of microbenchmarks and metrics conforms with publicly avail-
able benchmarking suites for parallel computing, such as the OSU Micro-
benchmarks[8] by the Ohio State University’s Network-based Computing Lab-
oratory.

The first section of this chapter focuses on point-to-point transfers; the re-
maining sections each focus on one collective operation.

4.1 Point-to-point Transfers

In this section, we study the performance of IPU systems when engaged in
point-to-point communications (data transfers from one source tile to one des-
tination tile) under diverse load conditions.

Our results draw a map of the relative proximity of the constituents of an
IPU system (specifically, how quickly tiles can reach each other in terms of
latency and bandwidth, depending on relative distance in the system) that is
predictable and consistent with the known topology of the system presented
in Figures 2.1 and 2.2.

Software designers can take advantage of our results to gain an under-
standing of the latency penalty and bandwidth associated with traversing the

31
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on-chip interconnect, crossing IPU links on a board, and crossing IPU links
across boards.

We benchmark latency and bandwidth in a spectrum of congestion condi-
tions ranging from global silence (the system is idle, with the only exception
of the one transfer benchmarked) to full load (all tiles are engaged in commu-
nication with the same pattern as the one benchmarked).

(a) Transfer between tiles on the same IPU (b) Transfer between tiles on different IPUs (c) Transfer between tiles on different IPUs (d) Transfer between tiles on different IPUs
on the same board on different boards, direct IPU link on different boards, no direct IPU link

TP Boaa 0 [P0 563 0 B0 P63 0

o e o o
; ;
;
T T
o m o o
5
Toe 1215

Figure 4.1: Communication topologies we evaluate in point-to-point latency benchmarks. Data
transfers between the source and the destination tiles are depicted with blue arrows. The experi-
ments are designed to exercise both on-chip (a) and off-chip (b,c,d) interconnects.

4.1.1 Congestion-free Latency

We study the latency incurred by a single, minimum-size transfer between
two tiles while the rest of the system is idle (global silence on the intercon-
nects).

The latencies we measure are consistent with the topology of the experi-
ment. On chip, a source tile can reach any destination tile on the same IPU
within 0.13 microseconds on average. As soon as a message needs to cross an
IPU link to reach its destination, a penalty of approximately 0.5 microseconds
applies. Surprisingly, reaching a tile on the second IPU located on the same
board as the source is marginally more expensive than reaching a directly con-
nected IPU on a different board. Detailed results are in Table 4.1.

Detailed descriptions of the experimental topologies we benchmarked fol-
low, matching the corresponding illustrations in Figure 4.1 and corresponding
results of Table 4.1:



4.1. POINT-TO-POINT TRANSFERS 33

e in experiment (a) we exercise the on-chip interconnect; the source and
destination tiles (i and j) reside on the same IPU. We obtain the average
latency value over a large number of experiments. In each such experi-
ment, ¢ and j are chosen randomly;

e in experiment (b) we exercise the off-chip IPU Link interconnect be-
tween two IPUs on the same board;

e in experiment (c) we exercise the off-chip IPU Link interconnect between
two IPUs on different boards when those IPUs are directly connected via
an IPU link. Surprisingly, this latency is marginally lower than that of
experiment (b);

o in experiment (d) we exercise the off-chip IPU Link interconnect in con-
ditions where the two IPUs involved are not directly connected via an
IPU link and communication requires traversing more than one IPU

link.
Experiment Latency
On-chip (a) 0.133 us
Off-chip, on board (b) 0.633 us

Off-board, direct IPU link (c) 0.524 pus
Off-board, indirect IPU link  (d) 0.779 us

Table 4.1: Point-to-point latency for small messages under no load. Experiments labeled (a)...(d)
correspond to the illustration in Figure 4.1 and are described above.

4.1.2 Latency between Tiles on a Chip by Proximity

We study how the physical proximity between pairs of tiles on a chip affects
their communication latency in congestion-free conditions.

We measure latency between all pairs of tiles and depict our results in
Figures 4.2 and 4.3. The first figure focuses on tiles within a column; the sec-
ond shows the entire IPU. In both figures, the main diagonal (in white) corre-
sponds to local transfers, which are carried out in local memory and do not
involve the exchange. Latencies reflect tile topology (Figure 2.2).

Latency measurements. The reader should pay attention to the fact that the
latency measurements presented within this section may differ from those of
other sections, e.g., Table 4.1. The discrepancy is due to the use of different
timing methods. Specifically, experiments in this section use the on-IPU, fine-
grained profiling facilities offered with the Poplar SDK (that we described un-
der “Single-IPU measurements” in Section 2.3) which do not include the cost
of the on-IPU synchronization phase that precedes the transfer, whereas other
sections typically use host-based “Multi-IPU measurements” that include that
cost. Both measurements are meaningful when appropriately characterized.
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Figure 4.2: Minimum latency between all tiles belonging to the same Column on an IPU processor
(we first presented columns in Figure 2.2).

Within a column. Data transfers within the same column take 37..59 ns
(59...95 clock cycles); see Figure 4.2. Intra-column latency primarily depends
on what island the destination tile belongs to; transfers to the same island have
same latency, no matter the source island. Latency is minimal when transfer-
ring to a tile belonging to the island closest to the IPU Exchange (e.g., for
Column 0, that’s island of tiles 0, 1, 74 and 75). Latency increases by 1.25 ns (2
clock cycles) for every island the destination moves away from the exchange.

Across columns. Latency is 98 ns (the highest) in transfers from Column 8 to
0 (tile 646 to 0). Transfers from the rightmost columns (column 7 and 8) to the
leftmost columns (0 and 15) take more than 63 ns. Transfers in the opposite
direction have lower latency.

4.1.3 Latency between IPUs by Proximity

We measure and chart the minimum latency between pairs of IPUs across
the entire 16-IPU experimental system. Latencies correlate directly with the
distance between source and destination IPUs along the network topology of
Figure 2.1. We chart our results in Figure 4.4.

Numbering. In this section we only refer to IPUs by DNC IDs (as opposed to
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Figure 4.3: Minimum latency between all pairs of tiles on an IPU processor.

Device IDs—recall the distinction from Section 2.2). This is precisely because
DNC IDs account for the proximity between pairs of IPUs, whereas Device
IDs don't.

Results. We find that:

o the lowest latency is between IPU with DNC IDs ¢ and i £ 2, i.e., each
even-numbered IPU reaches the fastest those even-numbered IPUs that
are facing it on the neighboring boards. The same applies to odd-
numbered IPUs. These links are visible in the matrix as the two diagonal
lines with the most intense shade of green; they are two cells above the
main diagonal and two cells below the main diagonal;

o pairs of IPUs located on the same board see the second-best latencies
across the system;

o there is no wrap-around. The IPUs with DNC IDs 0 and 14 are not neigh-
bors; neither are 1 and 15. These four IPUs suffer from edge effects in
the sense that they only have one neighbor of same parity. This reflects
the IPU Link network shape (i.e., not a torus).
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Figure 4.4: Minimum latency between each pair of IPUs in our experimental 16-IPU system,
measured in zero-congestion conditions. IPUs are numbered according to their DNC IDs, as
discussed in Section 2.2.
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4.1.4 Latency under Load

In this section, we investigate the impact of congestion on point-to-point la-
tency. We simulate traffic conditions by instantiating identical point-to-point
transfers that occur concurrently.

We compare latencies in the congestion-free scenario and under load in
Table 4.2. In the table, experimental conditions (a)...(d) refer to same topolo-
gies we considered in our congestion-free study (Section 4.1.1). In summary,
congestion increases on-chip latency only marginally (+24%), but it affects off-
chip IPU link latency significantly, with slowdowns of 4.0...7.7 x.

We also find that the average per-message latency in a multi-IPU system is
remarkably scalable: randomized concurrent transfers across a 16-IPU system
experience a latency that is minimally higher (1.93 ns/message) than on a
single-board 2-IPU system (1.76 ns/message).

The methods we used to put the interconnect under load are described
below.

Experiment Congestion-free Latency  Congestion

Latency wunderload degradation
On-chip (a) 0.133 us 0.165 us 1.2x
Off-chip, on board (b) 0.633 ps 2.521 us 4.0x
Off-board, direct IPU link (c) 0.524 ps 2.524 ps 4.8x
Off-board, indirect IPU link  (d) 0.779 us 5.989 us 7.7x

Table 4.2: Effect of congestion on point-to-point latency. This is a short summary that compares
congestion and no-congestion results in conditions (a)...(d) corresponding to the previous section.
More detailed experiments are in the next table.

Experiments (a)...(d) in presence of congestion match the corresponding
congestion-free experiments (described in the previous section), with the fol-
lowing additional details:

e in experiment (a), each tile on an IPU performs one transfer to one ran-
domly selected tile on the same IPU; as many transfers occur concur-
rently as there are tiles on one IPU (1,216). Each tile participates in ex-
actly one transfer as a source and in exactly one (other) transfer as a
destination;

e in experiment (b), we exercise the off-chip IPU Link interconnect be-
tween two IPUs on the same board. Each tile on one IPU performs
one transfer to one randomly selected tile on the other IPU on the same
board. As many transfers occur concurrently as there are tiles on one
IPU. Each tile on the first IPU participates in exactly one transfer as a
source, and each tile on the second IPU participates as a destination. All
cross-IPU traffic is monodirectional;
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in experiment (c), we exercise the off-chip IPU Link interconnect be-
tween two IPUs on different boards when those IPUs are directly con-
nected via an IPU link (e.g., each tile on IPU5 performs one transfer to
one randomly selected tile on IPU4; see Figure 2.1). As many transfers
occur concurrently as there are tiles on one IPU. Each tile on the source
IPU participates in exactly one transfer as a source, and each tile on the
destination IPU participates in exactly one transfer as a destination. All
cross-IPU traffic is monodirectional;

in experiment (d) we exercise the off-chip IPU Link interconnect in con-
ditions where the two IPUs involved are not directly connected via an
IPU link and communication requires traversing more than one IPU link
(e.g., each tile on IPUS performs one transfer to one randomly selected
tile on IPU6; see Figure 2.1). All other conditions are the same as in
experiment (c).

For a finer-grained characterization of congestion impact, see the aug-
mented results of Table 4.3 and our observations that follow.

Scale  Experiment Concurrent Total Avg. latency
(IPUs) transfers latency  per message

On-chip: source and destination tiles are on the same IPU
1 0.123 ps 122.565 ns

2 0.130 ps 65.040 ns

4 0.157 ps 39.253 ns

8 0.152 ps 18.994 ns

16 0.160 ps 10.009 ns

38 0.148 ps 3.884 ns

76 0.165 ps 2173 ns

1/8 152 0.163 ps 1.070 ns

1/4 ... a quarter of one IPU 304 0.165 us 0.541 ns

1/2 ... half IPU 608 0.165 ps 0.272 ns

1 ... the entire IPU (a) 1,216 0.165 ps 0.136 ns

2 Cross-IPU experiments - 2 IPUs - monodirectional traffic

... both IPUs on the same board (b) 1,216 2.521 ps 2.073 ns

... across boards, direct IPU link (c) 1,216 2.524 us 2.076 ns

... across boards, no direct IPU link  (d) 1,216 5.980 pus 4917 ns
Cross-IPU experiments - random system-wide destinations

2 ... both IPUs on the same board 2,432 4.282 us 1.761 ns

2 ... across boards, direct IPU link 2,432 2.572 us 1.058 ns

2 ... across boards, no direct IPU link 2,432 6.030 us 2.480 ns

4 4 IPUs on two boards 4,864 5.981 us 1.230 ns

8 8 IPUs on four boards 9,728  16.532 us 1.699 ns

16 16 IPUs, entire system 19456 37.611 us 1.933 ns

Table 4.3: Fine-grained and larger-scale detailed results on the effect of congestion on latency.

In the on-chip experiments, we vary congestion by varying the number of
concurrent transfers from 1 to 1,216. In each transfer, a randomly selected set
of tiles (of count 2, 4, 8 ... 1,216) transfer to as many destination tiles on the
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same IPU. At the upper extreme, this coincides with experiment (a) as already
described.

The middle band of the table contains results of experiments (b), (c) and (d)
involving 2 IPUs where the source tiles are segregated on one IPU and all the
destination tiles are on another. All cross-IPU traffic in these experiments is
monodirectional. We have described these experiments earlier in this section.

In the bottom band of the table, we present results corresponding to deseg-
regated destinations. We consider varying system scales (from 2 to 16 IPUs)
and, at every scale, all the tiles in the system are the source of one transfer.
The destination of each transfer is chosen randomly among all tiles in the sys-
tem. The destination tile can be on the same IPU as the source or on any other
IPU. This communication scheme is representative of parallel applications us-
ing a domain decomposition that requires uniformly spread communication.
Results show good scalability across system sizes. The average per-message
latency does not seem to grow significantly in a 16-IPU system compared to
smaller systems.

4.1.5 Congestion-free Peak Bandwidth

We study the peak bandwidth available to a single point-to-point transfer be-
tween pairs of tiles in different topologies in congestion-free conditions (no
other operations occurring in the rest of the system; global silence on all inter-
connects except for the transfer being benchmarked).

Peak. Everywhere in this paper, the term peak bandwidth denotes the band-
width seen by transfers of sufficiently large messages (we use the terms block
and message equivalently). On most interconnect architectures, peak band-
width values are achieved with larger messages. That happens because trans-
fers both of large and small blocks tend to incur similar communication setup
overheads, but with larger blocks those overheads are amortized on higher
byte counts, thus yielding higher throughput values. This property holds on
the IPU too, for both the on-chip IPU interconnect and the off-chip IPU Link
network. We verify this claim experimentally in Section 4.2.3.

Our experiments cover the same topologies already described in Sec-
tion 4.1.1 and depicted in Figure 4.1.

All results follow in Table 4.4. There is a 14% decrease in point-to-point
bandwidth when moving from on-chip to off-chip, on-board communication.
There is an additional 9% penalty when moving from on-board to inter-board
communication with source and destination IPU linked directly. When IPUs
are not connected directly, bandwidth decrease marginally (less than 2%).

Tile proximity on chip. Physical proximity between the source tile and des-
tination tile on a chip does not affect the peak bandwidth available between
the two tiles. We compare the bandwidth accessible between physically near
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Experiment Peak Bandwidth
On chip (a) 6.34 GB/s
Off chip, on board (b) 5.46 GB/s
Off board, direct IPU link (c) 499 GB/s
Off board, indirect IPU link  (d) 491 GB/s

Table 4.4: Point-to-point peak bandwidth under no load. Experiments labeled (a)...(d) correspond
to the topologies in Figure 4.1.
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Figure 4.5: The effect of physical proximity on tile-to-tile transfer bandwidth within an IPU is
negligible, especially with large messages. In our experiments, the chosen pair of neighboring
tiles is (0,1) and the chosen pair of far tiles is (0,644), consistent with the tile enumeration of
Figure 2.2.

and far tiles at various block sizes; results are in Figure 4.5. Performance is
indistinguishable for sufficiently large data blocks. When blocks are smaller
than 32 KiB, far tile pairs suffer a slightly longer transfer setup time.
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Experiment Congestion-free Bandwidth Degradation
Bandwidth  under load
(GB/s) (GB/s)
On chip (a) 6.34 6.21 1.02 x
Off chip, on board (b) 5.46 0.0436 125.2 x
Off board, direct IPU link (c) 4.99 0.0224 222.8 x
Off board, indirect IPU link  (d) 491 0.0224 219.2 x

Table 4.5: Effect of congestion on point-to-point bandwidth. This is a short summary that com-
pares congestion and no-congestion results in conditions (a)...(d) corresponding to the previous
section. Extended results are available in the next table.

4.1.6 Peak Bandwidth under Load

We study the peak bandwidth available to concurrent point-to-point trans-
fers between pairs of tiles in different topologies and under different loads.
We consider the same topologies as in the previous sections (Figure 4.1). We
compare our results against congestion-free ones (Table 4.5).

On chip. The aggregate bandwidth available on the on-chip interconnect
scales virtually perfectly with the number of concurrent transfers. As concur-
rent transfers grow in number, the bandwidth seen by each transfer remains
virtually constant at 6.3 GB/s; see the first band of Table 4.6, culminating in
experiment (a).

Off chip. The off-chip bandwidth offered by IPU links is lower than that
offered on chip by the exchange. An intra-board IPU link connection offers 55
GB/s in each direction. IPU Link connections between different boards offer
approximately half that much bandwidth per direction, 28 GB/s, regardless
of whether the pair of IPUs is directly or indirectly connected via IPU links.
Bidirectional bandwidth under load effectively doubles the monodirectional
values.

Our extended results of Table 4.6 provide a finer-grained characterization
of congestion.

Experiments (b),(c) and (d) focus on the measurement of monodirectional
inter-IPU bandwidth in the same topologies depicted in Figure 4.1. They all
involve 1,216 concurrent transfers, arranged so that each tile on the source IPU
is the source of exactly one transfer directed at exactly one randomly selected
tile located on the destination IPU.

Results show that the on-board, inter-IPU monodirectional bandwidth is
roughly twice as high as across boards (55 vs 28 GB/s).

Additionally, we measure bidirectional inter-IPU bandwidth with experi-
ments (b*),(c*) and (d*), which are the bidirectional extension of (b), (c), and
(d), respectively. Experiments (b*),(c*) and (d*) all involve 2,432 transfers, of
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Scale  Experiment Concurrent Aggregate  Bandwidth
(IPUs) transfers bandwidth  per transfer
(GB/s) (MB/s)
On-chip: source and destination tiles are on the same IPU
One tile to one tile 1 6.34 6,341.
2 tile to 2 tiles 2 12.65 6,323.
. 4 25.29 6,323.
8 50.58 6,323.
16 101.06 6,316.
38 240.12 6,319.
76 480.32 6,320.
1/8 152 959.89 6,315.
1/4 ... a quarter of one IPU 304 1,919.68 6,315.
1/2 ... half IPU 608 3,839.22 6,315.
1 ... the entire IPU (a) 1,216 7,679.01 6,315.
2 Cross-IPU experiments - 2 [PUs - monodirectional
... both IPUs on the same board (b) 1,216 55.00 45.23
... across boards, direct IPU link (c) 1,216 27.72 22.79
... across boards, no direct IPU link  (d) 1,216 27.71 22.79
2 Cross-IPU experiments - 2 IPUs - bidirectional
... both IPUs on the same board (b*) 2,432 108.09 44.44
... across boards, direct IPU link (c® 2,432 54.86 22.56
... across boards, no direct IPU link  (d*) 2,432 55.02 22.62
Cross-IPU experiments - randomized system-wide destinations - no segregation
2 to 2 IPUs
2 ... both IPUs on the same board 2,432 109.57 45.05
2 ... across boards, direct IPU link 2,432 54.86 22.56
2 ... across boards, no direct IPU link 2,432 55.02 22.62
4 to 4 IPUs on two boards 4,864 109.72 22.56
8 to 8 IPUs on four boards 9,728 111.13 11.42
16 to 16 IPUs, entire system 19,456 111.28 5.72

Table 4.6: Point-to-point peak bandwidth: bandwidth available to concurrent transfers under load.

which 1,216 go from one IPU to another and 1,216 go in the opposite direc-
tion. Each tile on the first IPU is involved in exactly two transfers: in one as
a source tile, and in the other as a destination tile. In both such transfers, the
other endpoint is on the other tile. The same is true for the second IPU. All
transfers are across IPUs. No transfers are IPU-local.

These experiments’ results show that bidirectional aggregate bandwidth is
twice as high as the corresponding monodirectional values (108 GB/s vs. 55,
and 55 GB/s vs 28).

The bottom band in the table studies per-transfer bandwidth degradation
as the system size scales up. We instantiate Multi-IPUs comprising growing
physical IPU counts (2, 4, 8, and 16), and in each experiment we originate
exactly one transfer from each tile in the Multi-IPU system toward a randomly
selected tile in the system (uniform distribution). Source and destination tiles
may or may not be on the same IPU or C2 board.
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Figure 4.6: Peak monodirectional bandwidth between pairs of IPUs, in congestion-free condi-
tions. IPUs are numbered according to their DNC IDs, as discussed in Section 2.2.

In a 16-IPU system, the average per-tile bandwidth degrades to approx-
imately 5.72 MB/s, which is 25% of the monodirectional aggregate per-tile
bandwidth available when the system involves a pair of IPUs (not on the same
board).

4.1.7 Peak Bandwidth between IPUs by Proximity

We study how IPU proximity in a multi-IPU system affects monodirectional
peak bandwidth in congestion-free conditions. We find that it does not—a
randomly selected pair of IPUs not located on the same board can transfer
data at 27 GB/s (monodirectional) regardless of their respective position in
the ladder network (Figure 4.6).

Benchmark. Our benchmark considers all (source,destination) pairs of IPUs.
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We number IPUs according to their DNC IDs. In each experiment, we create
exactly 1,216 transfers. Each tile in the source IPU transfers a 4 KiB message
to a distinct, randomly selected tile on the destination IPU. No other transfers
are occurring in the system.

4.1.8 Multi-threaded Peak Bandwidth

We study the effect of multi-threading on the peak bandwidth available on-
chip and off-chip. We find the following;:

o asingle thread is sufficient to achieve full bandwidth;
o the use of multiple threads is not necessary to achieve peak values;

e if used (potentially for other purposes), multi-threading will not cause
any bandwidth degradation.

This investigation is motivated by the fact that tiles support executing in-
structions from up to six concurrent thread contexts in an SMT-like fashion.
It is legitimate for a software designer to wonder whether the use of multiple
threads to initiate concurrent transfers will achieve a higher aggregate band-
width.

Results show that the use of additional threads causes no material change
in performance, neither on chip nor across chips.

Aggregate bandwidth (GB/s)

Experiment 1thread  2threads 3 threads 4threads 5threads 6 threads
On-chip: source and destination tiles are on the same IPU

One tile to one tile 6.14 6.13 6.13 6.13 6.13 6.13
2 tiles to 2 tiles 1222 12.27 12.24 12.26 12.07 12.29
4 tiles to 4 tiles 24.45 24.52 24.48 24.54 24.51 24.49
8 tiles to 8 tiles 48.96 48.95 48.92 48.94 48.92 48.93
16 tiles to 16 tiles 97.85 97.86 97.87 97.94 97.89 97.76
38 tiles to 38 tiles 232.54 232.44 232.37 231.96 232.03 232.15
76 tiles to 76 tiles 464.62 464.59 464.32 464.76 464.60 464.49
152 tiles to 152 tiles 928.64 927.85 928.49 928.49 928.41 928.19
304 tiles to 304 tiles 1,857.74 1,855.70 1,856.45 1,856.45 1,857.36 1,856.30
608 tiles to 608 tiles 3,713.81 3,712.90 3,712.75 3,712.45 3,712.90 3,702.61
1,216 tiles to 1,216 tiles 7,425.80 7,427.92 7,425.80 7,425.80 7,426.41 7,428.22
Cross-IPU experiments - 2 IPUs - monodirectional

... both IPUs on the same board ~ 54.99 54.99 54.99 54.90 54.88 54.91
... across boards, direct IPU link ~ 27.71 27.71 27.71 27.67 27.66 27.67
... across boards, no direct IPU link 27.71 27.71 27.71 27.66 27.63 27.66

Table 4.7: Multi-threaded point-to-point peak bandwidth: the use of different threads per tile does
not affect the bandwidth available to concurrent transfers.
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Experiment scale: 1 IPU Experiment scale: 2 IPUs Experiment scale: 4 IPUs

(a) Broadcast on chip

(e) Broadcast to both IPUs on a board (including source IPU)

(c) Broadcast to an entire IPU on a different board, (f) Broadcast to 2 entire IPUs, the second IPU being B
direct IPU connection on a different board; direct IPU connection (h) Broadcast to 4 entire IPUs on two boards

(d) Broadcast to an entire IPU on a different board, (g) Broadcast to 2 entire IPUs, the second IPU being
no direct IPU connection on a different board; no direct IPU connection

Figure 4.7: Topologies we benchmark in our broadcast and scatter experiments. Different topolo-
gies have different connectivity between source and destination tiles and perform differently. We
depict data flows from the source to the destination tiles with blue arrows. Reversing all blue
arrows depicts the data flows in the gather experiments.
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4.2 Broadcast

This is the first section in this chapter dedicated to studying the performance
of collective operations. Specifically, this section focuses on latency and band-
width available to broadcast operations at different scales and for different
topologies.

Broadcast. In a broadcast operation, one tile sends the same message to mul-
tiple destination tiles. Each destination tile receives an identical copy of the
data. The source tile maintains a source buffer available to the operation, in
local memory, for the entire duration of the operation. Correspondingly, each
destination tile maintains a local destination buffer available to the operation.
In benchmarks involving whole IPUs, the source tile is also among the des-
tinations, and maintains both a source and a destination buffer in its local
memory. This limits the largest block size available for this benchmark to ap-
proximately 100 KiB.

Scale. By scale we mean the destination tile count, or the IPU count if whole
IPUs are involved (Table 4.7). We vary scale from one tile to the entire test
system, which includes 16 IPUs on 8 boards. When using 2 IPUs, we study
the impact of topology and source-destinations proximity: we place the source
and destinations on the same board (experiment (b)) and on different boards.
We consider pairs of boards directly or indirectly connected with IPU Links
(experiments (c) and (d), respectively).

No load. Experiments in this section study load conditions in which no other
operation is in progress. Each transfer’s performance is affected only by the
load caused by the remainder of the collective operation.

Topologies. We benchmark the topologies of Figure 4.7, where thin blue ar-
rows depict the data flows from the source to the destination tiles. Experi-
ments at different scales are illustrated in different columns of the figure: sub-
figures in the first column illustrate experiments where the destination tiles
belong to 1 IPU; the second column illustrates experiments where destination
tiles span 2 IPUs; and the third column illustrates experiments where the des-
tination tiles span 4 IPUs. We omit experiments involving 8 and 16 IPUs for
brevity.

In the figure, experiments on different rows involve different portions of
the interconnect. In the first row, only the on-chip interconnect is involved.
Experiments in the second row also involve the IPU Link connection between
two IPUs located on the same board. Experiments in the lower rows involve
IPU Links across multiple boards.

Experiments (b) and (e) study the cost of performing a broadcast between
IPUs when both IPUs reside in the same tile. The difference between (b) and
(e) is that in (e), the tiles on the first IPU are also broadcast destinations, while
in (b), no tiles of the first IPU are destinations.
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The same difference appears between experiments (c) and (f). Again, the
same difference appears between experiments (d) and (g). This is symbolized
in the picture by additional blue arrowheads in (f) and (g) that point to tiles
on the source IPU.

Experiments (c) and (f) involve 2 IPUs that are not on the same board but
are connected directly via IPU Links. In contrast, experiments (d) and (g)
involve 2 IPUs that are not connected directly via IPU Links.

4.2.1 Congestion-free Broadcast Latency

We focus first on the minimum latency associated with a broadcast operation.
To do that, we transfer a message of minimum size, i.e., a word of 32 bits. We
vary the experiment’s scale from one tile to the whole system. We find that
the system displays remarkable scalability, with a 16-IPU broadcast taking
less than 2 microseconds. Our results are in Table 4.8.

The first experiment in the table (not labeled) is a mere transfer from a tile
to itself. It results in a local memory copy that doesn’t involve the exchange
or IPU links. We report it (12 nanoseconds) only for reference; the reader can
subtract this value from subsequent result values to separate the local and
interconnect contributions to latency.

In the experiments described in the following rows, the set of destination
tiles grows till it reaches the entire IPU.

One tile can broadcast one word to the entirety of its IPU in less than
0.2 microseconds. The additional penalty to perform an off-chip broadcast
involving 2 IPUs is approximately 0.5 microseconds. The total latency of a
broadcast targeting all 16 IPUs in the test system is below 2 microseconds.

Observations:

o the latency of a broadcast operation involving the entire chip roughly
grows logarithmically with tile count (Figure 4.8, left);

o similarly, the latency of a broadcast operation spanning across multiple
IPUs roughly grows logarithmically with IPU count (Figure 4.8, right);

o performing a broadcast across 2 IPUs takes approximately 0.7 microsec-
onds; that is approximately 0.5 microseconds more expensive than a
single-IPU broadcast;

o the cost of performing an off-chip broadcast is dominated by the cost
of traversing an IPU Link; the latency we measure in experiments (b)
and (e) is identical. This suggests that in experiment (e), the on-chip
broadcast involving the source IPU occurs in parallel with the sequence
of operations comprising the transfer to across the IPU link followed
by the on-chip broadcast on the destination IPU. The latter sequence
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Figure 4.8: Broadcast latency scaling. Left: scaling within an IPU (on chip). Right: scaling and
across multiple IPUs (off chip).
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Scale  Experiment Destination Total
(IPUs) tile count latency
Transfer to self (via local memory) 1 0.012 ps

On-chip: source and destination tiles are on the same IPU
One tile to n tiles 1 0.094 ps
2 0.094 us
4 0.094 us
8 0.094 ps
16 0.094 ps
38 0.134 ps
76 0.136 ps
1/8 152 0.142 ps
1/4 ... a quarter of one IPU 304 0.153 ps
1/2 ... half IPU 608 0.176 ps
1 ... the entire IPU (a) 1,216 0.194 us

1 to an entire IPU, different than that of source tile

... both IPUs on the same board (b) 1,216 0.747 ps
... across boards, direct IPU link (c) 1,216 0.637 us

... across boards, no direct IPU link  (d) 1,216 0.896 us
2 to 2 IPUs

... both IPUs on the same board (e) 2,432 0.747 us
... across boards, direct IPU link §9)] 2,432 0.637 us
... across boards, no direct IPU link  (g) 2,432 0.896 us
4 to 4 IPUs on two boards (h) 4,864 0.900 ps
8 to 8 IPUs on four boards i) 9,728 1.231 ps
16 to 16 IPUs, entire system G) 19,456 1.921 us

Table 4.8: Broadcast minimum latency: latency necessary to broadcast one value from one tile to
a set of tiles. We study destination sets of varying size and location. System scale and respective
location of source and destination tiles affect latency. Experiments labeled (a)-(j) benchmark the
topologies of Figure 4.7.

takes longer than the local broadcast and determines the overall latency.
Intuitively, once the penalty to reach remote tiles across the IPU Link is
paid, the marginal cost of also reaching local tiles is null.

e same considerations apply between pair of experiments (c,f), and pair

(d,g);

¢ unexpectedly, a broadcast between two IPUs on the same board (e) takes
marginally more time than between the IPUs located on different boards
(f,g). This result is consistent with our gather results (see Section 4.3.1).
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4.2.2 Peak Broadcast Bandwidth

In this section we study the peak bandwidth available to broadcast operations
of different scales. As in the previous section, we study the effect of source-
destination IPU proximity in the topologies (a)...(j) of Figure 4.7. Our results
are in Table 4.9.

The message size we employ in these experiments is 100 KiB. It is sulffi-
ciently large to saturate the aggregate bandwidth per tile, and at the same
time, it is close enough to the maximum size that allows for two copies (source
and destination buffer) to exist simultaneously in each tile’s local memory (248
KiB are available to the user). Fitting both buffers in local tile memory allows
us to run experiments where the source tile is also among the destinations.

No other traffic is occurring in the system except for that created by the
broadcast operation itself.

Scale Experiment Concurrent Aggregate  Bandwidth
(IPUs) transfers bandwidth  per transfer
(GB/s) (GB/s)
On-chip: source and destination tiles are on the same IPU
Point to point 1 6.35 6.35
One tile ... to 2 tiles 2 12.70 6.35
... to 4 tiles 4 50.49 12.62
8 100.92 12.61
16 201.58 12.60
38 477.10 12.56
76 954.17 12.55
1/8 152 1,906.51 12.54
1/4 ... to a quarter of one IPU 304 3,808.50 12.53
1/2 ... to half IPU 608 7,595.88 12.49
1 ... to the entire IPU (same as source tile)  (a) 1,216 15,134.80 12.46
1 to an entire IPU, different than that of source tile
... both IPUs on the same board (b) 1,216 6,871 5.65
... across boards, direct IPU link (c) 1,216 6,433 5.29
... across boards, no direct IPU link (d) 1,216 6,427 5.29
2 to 2 IPUs
... both IPUs on the same board (e) 2,432 9,440 3.88
... across boards, direct IPU link () 2,432 9,051 3.72
... across boards, no direct IPU link (g) 2,432 9,034 3.71
4 to 4 IPUs on two boards (h) 4,864 25,437 5.23
8 to 8 IPUs on four boards (1) 9,728 36,756 3.78
16 to 16 IPUs, entire system G) 19,456 47,343 2.43

Table 4.9: Peak bandwidth available to broadcast operations of varying scale. Experiments la-
beled (a)-(j) correspond to the topologies illustrated in Figure 4.7; we describe them in detail.

On-chip performance. As the scale of the broadcast increases within an IPU,
the bandwidth per tile achieved by the operation saturates around 12 GB/s.
12 GB/s seems to be the on-chip average per-transfer peak. Saturation occurs
with small destination sets: a destination set of 4 tiles is sufficient to achieve
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peak per-tile bandwidth.

Off-chip performance. A direct comparison between experiments (a) and (b),
that have identical destination count, reveals the penalty for extending the
broadcast off chip: a drop in average per-transfer bandwidth from 12.4 to 5.6
GB/s. The performance difference between on-board and inter-board com-
munication is negligible.

Scaling. The results of experiments (h)-(j) show that larger system scales ben-
efit from a monotonically increasing aggregate broadcast bandwidth. The
growth trend is, however, not linear, and not trivially explained.

4.2.3 Effect of Message Size on Broadcast Bandwidth

We study broadcast bandwidth performance below peak, i.e., when smaller
messages are transferred. We find that smaller messages achieve a fraction of
peak bandwidth depending on system scale (e.g., 1 KiB messages achieve 15-
30% peak bandwidth). Moreover, as system scale grows, larger message sizes
are needed to achieve close-to-peak performance. These observations are not
surprising and apply similarly to most parallel systems. We summarize them
quantitatively in Table 4.10. We also chart in detail the effects of message size
on broadcast bandwidth in Figures 4.9 and 4.10. The charts’ data refer to the
same scales (1-16 IPUs) and experimental topologies (a)-(j) already discussed.

In almost all experimental conditions, bandwidth saturates smoothly, in-
creasing monotonically with block size and suffering no degradation. Mi-
nor exceptions are topologies (c) and (d) (broadcasting to a whole IPU across
boards), where block sizes larger than 64 KiB seem to experience slightly
lower bandwidths than at 64 KiB.

Scale  Experiment % peak 90% peak Peak
(IPUs) at1 message  bandwidth
KiB size (GiB/s)
message (KiB)
1 ... the entire IPU (same as source tile) (a) 30.3% 13.2 15,134
1 to an entire IPU, different than that of source tile
... both IPUs on the same board (b) 189 % 5.7 6,871
... across boards, direct IPU link (00 221% 5.4 6,433
... across boards, no direct IPU link d) 164% 48 6,427
2 to 2 IPUs
... both IPUs on the same board (e) 252% 7.3 9,440
... across boards, direct IPU link ) 314% 7.5 9,051
... across boards, no direct IPU link (g 295% 7.4 9,034
4 to 4 IPUs on two boards (h) 165% 222 25,437
8 to 8 IPUs on four boards i) 152% 33.6 36,756
16 to 16 IPUs, entire system G) 14.6% 41.2 47,343

Table 4.10: Summary of aggregate broadcast bandwidth below peak.
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Figure 4.9: Impact of block size on aggregate broadcast bandwidth. Each line represents a
different experiment topology (a)-(j) as illustrated in Figure 4.7.
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IPU systems behave well at scale, with bandwidth growing smoothly with
scale as the number IPUs increases to 2, 4, 8, and 16 (experiments (g),(h),(i)
and (j) respectively). We see no saturation at scale, and larger scales benefit
from higher aggregate bandwidths. Per-tile bandwidths decrease smoothly,
roughly with the logarithm of the system size.

4.3 Gather

In this section we study the latency and bandwidth performance available to
gather operations.

Gather. For the complete avoidance of doubt, a gather is a collective operation
in which one tile receives one message from multiple source tiles. The desti-
nation tile receives a distinct message from each source, and must maintain
a destination buffer available to the operation, in its local memory, as large
as the product of message size and source count. Each source only needs
to maintain one destination buffer as large as the message size. In bench-
marks involving whole IPUs, the source tile is also among the destinations,
and must maintain in its local memory one source buffer plus multiple desti-
nation buffers.

Scale. We benchmark the same scales as in our broadcast experiments de-
scribed in Section 4.2.

No load. Experiments in this section study load conditions in which no other
operation is in progress. Each transfer’s performance is affected only by the
load caused by the remainder of the collective operation.

Topologies. We benchmark the topologies discussed in the previous section
and illustrated in Figure 4.7, with the notable difference that data flows are
reversed with respect to those of a broadcast operation, depicted in the figure
and described in Section 4.2.

Message size. The destination tile must dedicate to the operation one buffer
per source tile in its local memory. This constraints limits the maximum mes-
sage size usable in a gather operation. In turn, the limited message size is the
primary factor limiting the aggregate bandwidth available to the operation. A
complete discussion follows.

In benchmarks involving whole IPUs, the destination tile is also among
the sources, and maintains at the same time one output buffer and multiple
input buffers in its local memory.

4.3.1 Congestion-free Gather Latency

We study the minimum latency associated with a gather operation. To do
that, we transfer a message of minimum size, i.e., a word of 32 bits. A gather
involving an entire IPU completes in 0.8 microseconds. Gather latencies in
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Scale  Experiment Source Total Avg. latency
tile latency  per transfer
count (us) (ns)
Transfer to self (via local memory) 1 0.012 11.557
On-chip: source and destination tiles are on the same IPU

... from 2 tiles 2 0.094 47.142

4 0.094 23.567

8 0.094 11.784

16 0.094 5.892

38 0.097 2.563

76 0.121 1.595

1/8 .. 152 0.169 1.111

1/4 ... from a quarter of one IPU 304 0.264 0.869

1/2 .. from half IPU 608 0.455 0.748

1 ... from the entire IPU (a) 1,216 0.835 0.687
1 from an entire IPU to a destination tile located on a different IPU

... both IPUs on the same board (b) 1,216 4.929 4.053

... across boards, direct IPU link (c) 1,216 3.205 2.636

... across boards, no direct IPU link (d) 1,216 6.693 5.504

Multi-IPU experiments

2 IPUs on the same board (e) 2,432 5.708 2.347

2 IPUs on different boards, direct IPU link ) 2,432 3.983 1.638

2 IPUs on different boards, no direct IPU link  (g) 2,432 7.472 3.072

4 IPUs on two boards (h) 4,864 8.995 1.849

8 IPUs on four boards (i) 9,728 12.377 1.272

16 IPUs, entire system G) 19456  25.159 1.293

Table 4.11: Minimum gather latency in experiments of varying scale and topology. The topology
of experiments (a)-(j) is as illustrated in Figure 4.7, but with reversed data flow directions.

Multi-IPUs of increasing size grow sub-linearly, with 16 IPUs completing a
whole-system gather in 25 microseconds. Our results are in Table 4.11.

As we did for the broadcast operation, we first report the latency (12
nanoseconds) of a trivial gather operation involving the same tile as source
and destination. It results in a local memory copy, and we only report it for
comparison and latency breakdown.

Latency off chip. The direct comparison between experiments that involve a
pair of IPUs, connected directly vs. indirectly by IPU links, reveal that gather
latency depends directly on the number of hops between source and destina-
tion IPUs in the ladder network.

Specifically, experiment (d) results in approximately twice as much latency
as experiment (c). Similarly, experiment (g) exhibits roughly twice as much
latency as (f). This is intuitively consistent with the fact that experiments (g)
and (d) involve two hops in the IPU link network, whereas experiments (c)
and (f) only involve one hop (see Figure 4.7, but assume the reverse data flow
direction).
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A gather operation involving two IPUs on the same board exhibits slightly
longer latency when the IPUs are across boards and directly connected. This
is evident by direct comparison between (c) and (b) in the table and also by
comparison between (f) and (e). This result is consistent with our results for
the broadcast and scatter operations, which we report in Tables 4.8 and 4.13,
respectively.

Latency at scale. Results show that a doubling of system size roughly corre-
sponds to a doubling of network diameter, which causes in turn an approxi-
mate doubling of total latency.

4.3.2 Peak Gather Bandwidth

Scale  Experiment Source Message Aggregate  Bandwidth

tile size  bandwidth  per transfer

count (bytes) (GB/s) (MB/s)

Transfer to self (via local memory) 1 160 0.571 570.61

On-chip: source and destination tiles are on the same IPU

To one tile ... from 2 tiles 2 160 0.580 290.07

... from 4 tiles 4 160 1.258 314.47

8 160 2.105 263.16

16 160 3.148 196.75

38 160 4.465 117.51

76 160 5.260 69.22

1/8 152 160 5.759 37.89

1/4 ... from a quarter of one IPU 304 160 6.063 19.94

1/2 ... from half IPU 608 160 6.219 10.23

1 ... from the entire IPU (a) 1,216 160 6.303 5.18
1 from an entire IPU, different than that of the destination tile

... both IPUs on the same board (b) 1,216 80 4.815 3.96

... across boards, direct IPU link (c) 1,216 80 4.805 3.95

... across boards, no direct IPU link  (d) 1,216 80 4.561 3.75

Multi-IPU experiments

2 on the same board (e) 2,432 80 5.829 240

2 across boards, direct IPU link () 2,432 80 5.685 2.34

2 across boards, no direct IPU link (g) 2,432 80 5.677 2.33

4 two boards (h) 4,864 40 5.856 1.20

8 four boards i) 9,728 20 5.743 0.59

16 eight boards, entire system G) 19,456 4 5.520 0.28

Table 4.12: Peak gather bandwidth: bandwidth available to gather operations that use the largest
message size allowed by local memory capacity, in varying scales and topologies. We explicitly
report the message used in each experiment, as different scales correspond to different maximum
message sizes. Experiments labeled (a)-(j) use topologies corresponding to these illustrated in
Figure 4.7, but with reversed data flow directions.

In this section we study the peak bandwidth available to gather operations
at different scales and in different topologies. As we did in the previous sec-
tions, we study the effects of source-destination IPU proximity in topologies
(@)...(j) of Figure 4.7, with the caveat that gather operations involve data flows
of the reverse direction than that depicted in the figure. At each scale we
use the largest message size allowed by local memory capacity. Results show
that the operation’s performance is primarily limited by the small message
size and is less sensitive to scale. Aggregate gather bandwidth degrades very



4.4. SCATTER 57

gracefully with scale, with 16-IPU systems experiencing an aggregate band-
width that is only 5.3% lower than that available on a 2-IPU board. Our results
are in Table 4.12.

Small messages. Local memory capacity on the source tile is the limiting fac-
tor for message size. As scale increases, the maximum usable message size
decreases from 160 to 4 bytes. Small message size limits, in turn, available ag-
gregate bandwidth. The bandwidth decrease is consistent with that already
benchmarked in Section 4.2.3.

Off chip. Scatter operations exhibit minimal degradation of performance
when moving from on chip to off chip: aggregate bandwidth decreases from
6.3 t0 5.6...5.2 GB/s. The aggregate bandwidth at scales of 2...16 IPUs is virtu-
ally identical for gather and scatter operations.

4.4 Scatter

In this section we study the latency and bandwidth performance available to
scatter operations.

Scatter. A scatter operation is similar to a broadcast in the sense that both op-
erations involve one source and multiple destination tiles. The two operations
differ in the scatter sending a distinct message to each destination, whereas a
broadcast sends the same message to all destination. Moreover, a scatter is the
reverse operation of a gather.

Scale. We benchmark the same scales as in our broadcast and gather experi-
ments. We described it in Section 4.2.

No load. Experiments in this section study load conditions in which no other
operations are in progress. Each transfer’s performance is affected only by the
load caused by the remainder of the collective operation.

Topologies. We benchmark the same topologies discussed in the previous
sections, and illustrated in Figure 4.7. Scatter data flow directions are correctly
depicted in the figure (thin blue arrows) and also match those described in
Section 4.2 for broadcast operations.

Message size. The source tile must dedicate to the operation one buffer per
destination in its local memory. This constraints limits the maximum message
size usable in a scatter operation. In turn, the limited message size is the
primary factor limiting the aggregate bandwidth available to the operation.
A complete discussion follows.

In benchmarks involving whole IPUs, the source tile is also among the
destinations, and maintains at the same time one input buffer and multiple
output buffers in its local memory.
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Scale  Experiment Destination Total Avg. latency
tile latency  per transfer
count (us) (ns)

Transfer to self (via local memory) 1 0.012 11.542
On-chip: source and destination tiles are on the same IPU

... to 2 tiles 2 0.181 90.713

4 0.183 45.823

8 0.186 23.237

16 0.191 11.927

38 0.205 5.384

76 0.226 2973

1/8 . 152 0.273 1.795

1/4 ... to a quarter of one IPU 304 0.367 1.207

1/2 .. tohalf IPU 608 0.555 0913

1 ... to the entire IPU (a) 1,216 0.927 0.762

1 to an entire IPU, different than that of the source tile

... both IPUs on the same board (b) 1,216 1.361 1.361

... across boards, direct IPU link (c) 1,216 1.275 1.048

... across boards, no direct IPU link (d) 1,216 1.404 1.155

Multi-IPU experiments

2 IPUs on the same board (e) 2,432 2.268 0.932

2 IPUs on different boards, direct IPU link () 2,432 2.181 0.897

2 IPUs on different boards, no direct IPU link  (g) 2,432 2.181 0.897

4 IPUs on two boards (h) 4,864 3.707 0.762

8 IPUs on four boards @) 9,728 7.115 0.731

16 IPUs, entire system G) 19,456 13.729 0.706

Table 4.13: Minimum scatter latency in experiments of varying scale and topology. The topology
of experiments (a)-(j) is as illustrated in Figure 4.7.

44.1 Congestion-free Scatter Latency

We study the minimum latency associated with scatter operations of varying
scale and in different topologies. We transfer a message of minimum size,
i.e.,, a word of 32 bits. We vary the experiment’s scale from one tile to the
whole system. We find that a whole-IPU scatter completes in 0.9 microsec-
onds, only marginally slower than the gather operation of equal scale. Scatter
operations show remarkable scalability, with latencies in Multi-IPUs grow-
ing sub-linearly as a function of the number of hops in the ladder network.
A whole-system gather completes in 14 microseconds. Interestingly, off-chip
scatter operations are significantly faster than gathers of equal scale. Quanti-
tative results are in Table 4.11.

As we did in earlier tests, we report first the latency (12 nanoseconds) of a
trivial operation involving the same tile as source and destination. It results
in a local memory copy, and its latency is only intended for comparison and
contribution breakdown.

Latency off chip. Results collected over experiments at scale show that scatter
latencies also depend on the number of hops between sources and destination
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in the ladder network, but the off-chip penalty going from a single-IPU to a
2-IPU test is much smaller for scatter than for gather operations (0.4 vs. 3.1
microseconds).

Comparisons between 2-IPU, direct-vs-indirect topologies yield somewhat
similar considerations as gathers: directly connected pairs of IPUs on different
boards see a marginally better latency pairs of IPUs located on the same board
which, in turn, see a better latency than pairs of IPU not directly connected
via IPU links. The latency differences between the respective topologies are,
however, much smaller than those seen in the gather experiments.

At scale. Similarly to what we found for gather operations, a doubling of
system size roughly corresponds to a doubling of network diameter, which
causes in turn an approximate doubling of total latency. Scatter operations
complete, however, almost twice as quickly as gathers of equal scale.

4.4.2 Peak Scatter Bandwidth

Scale  Experiment Destination Message Aggregate Bandw.

tile size  bandwidth per tile

count (bytes) (GB/s) (MB/s)

Transfer to self (via local memory) 1 160 13.884  13883.50
On-chip: source and destination tiles are on the same IPU

One tile ... to 2 tiles 2 160 1.728 864.10

... to 4 tiles 4 160 2.706 676.54

8 160 3.812 476.55

16 160 4.770 298.12

38 160 5.592 147.15

76 160 5.971 78.56

1/8 152 160 6.175 40.62

1/4 ... a quarter of one IPU 304 160 6.279 20.65

1/2 ... half IPU 608 160 6.332 10.41

1 ... the entire IPU (a) 1,216 160 6.360 5.23

1 to an entire IPU, different than that of source tile

... both IPUs on the same board (b) 1,216 80 5.633 4.63

... across boards, direct IPU link (c) 1,216 80 5.229 4.30

... across boards, no direct IPU link (d) 1,216 80 5.217 4.29

Multi-IPU experiments

2 IPUs on the same board (e) 2,432 80 5.899 243

2 IPUs on different boards - direct IPU link  (f) 2,432 80 5.685 2.34

2 IPUs on different boards - no direct IPU link (g) 2,432 80 5.677 2.33

4 IPUs on two boards (h) 4,864 40 5.855 1.20

8 IPUs on four boards (i) 9,728 20 5.743 0.59

16 IPUs, entire system G) 19,456 4 5.514 0.28

Table 4.14: Peak scatter bandwidth: bandwidth available to scatter operations that use the largest
message size allowed by local memory capacity, in varying scales and topologies. We explicitly
report the message used in each experiment, as different scales correspond to different maxi-
mum message sizes. Experiments labeled (a)-(j) use the corresponding topologies illustrated in
Figure 4.7 and described in Section 4.2.

In this section we study the peak bandwidth available to scatter opera-
tions of different scales. As we did in the previous sections, we study the
effect of source-destination IPU proximity in topologies (a)...(j) of Figure 4.7.
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At each scale we use the largest message size allowed by local memory ca-
pacity. Results show that the operation’s performance is primarily limited by
the small message size, and is less sensitive to scale. Aggregate scatter band-
width degrades very gracefully with scale, with 16-IPU systems experiencing
an aggregate bandwidth that is only 6.6% lower than that available on a 2-IPU
board. Our results are in Table 4.14.

Small messages. We remark that local memory capacity on the source tile is
the limiting factor for message size. As scale increases, the maximum usable
message size decreases from 160 to 4 bytes. Small message size is, in turn,
the primary factor for the low aggregate available bandwidth. Results are
consistent with the findings already presented in Section 4.2.3.

Off chip. Scatter operations exhibit minimal degradation of performance
when moving from on chip to off chip: aggregate bandwidth decreases from
6.3 t0 5.6...5.2 GB/s. The aggregate bandwidth at scales 2...16 IPUs is virtually
identical for gather and scatter operations.

4.5 Alltoall

In this section we study the performance of all-to-all collective operations on
the IPU. Because of the number of distinct personalized transfers involved
in this operation and the associated local memory footprint, we were unable
to scale our benchmark to multiple IPUs, or even to an entire IPU. For that
reason, results in this section will be incomplete. We report latency results up
to half IPU (609 tiles). Half an IPU completes an all-to-all in 0.55 microseconds.
Our results are in Table 4.15.

All to all. In an all-to-all operation, each tile in a group sends one distinct
message to each tile in the group, itself included. If the group contains n
members, each participant concurrently sends n distinct messages. The whole
operation involves transferring n? distinct messages.

Message size. Each tile must dedicate to the operation n output buffers and
n input buffers. This constraint limits the maximum message size usable in
the operation. Specifically, we only consider messages consisting of a single
word, because they allow us to benchmark the largest scale (1/2 IPU).

Scale. Because of the aforementioned considerations, we were unable to
benchmark a whole-IPU all-to-all operation, or one involving multiple IPUs.

4.6 Reduction

We investigate the performance of reduction operations at different scales and
in different topologies.

Reduction. A reduction involves a variable number of source tiles (depending
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Scale  Experiment Total Concurrent Total Avg. latency
tile transfers  latency per transfer
count (us) (ns)

Transfer to self (via local memory) 1 1 0.012 11.542
On-chip: all tiles are on the same IPU

between 2 tiles 2 4 0.131 32.816

4 16 0.125 7.812

8 64 0.143 2227

16 256 0.163 0.637

38 1,444 0.182 0.126

76 5,776 0.215 0.037

1/8 152 23,104 0.256 0.011

1/4 ... a quarter of one IPU 304 92,416 0.355 0.004

1/2 ... half IPU 608 369,664 0.552 0.001

1 ... the entire IPU 1,216 1,478,656 - -

Table 4.15: Minimum all-to-all latency: latency of all-to-all communications in different scales.

on scale) plus one destination tile. The operation takes one input numerical
array on each source tile, and returns one output numerical array on the des-
tination tile. (For the avoidance of doubt, we are describing the equivalent of
an MPI_Reduce primitive, not an MPI_allreduce.)

Weak vs. Strong Scaling. As we vary the scale of the experiment, we consider
two scenarios: one in which the total amount of input operands grows linearly
with parallelism (weak scaling) and one in which it remains constant (strong
scaling).

Benchmark. The Poplar SDK offers popops: : reduce, a library primitive that
performs the reduction. Our experiments simply benchmark this primitive’s
performance. We use sum as a reduction operation.

No load. Experiments in this section study load conditions in which no other
operation is in progress. Each transfer’s performance is affected only by the
load caused by the remainder of the collective operation.

SDK version. Actual performance depends on the library function imple-
mentation provided with the specific version of SDK employed. Our results
are only representative of SDK 1.0.49.

4.6.1 Minimum Reduction Latency - Weak Scaling

We study how the latency of one reduction scales (first weakly, then strongly)
as it extends across tiles, then across IPUs on one board, then across boards,
finally spanning an entire 16-IPU system. Interestingly, we find the latency as-
sociated with completely distributed reduction is comparable (11...16% more
expensive) than a sequential operation of equal input size entirely performed
on one tile. Detailed results are in Table 4.16.
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Intent The purpose of this experiment is to understand how larger scale and
parallelism affect the overall latency and the per-operand latency of the op-
eration. In this context, we are especially interested in the data transfer com-
ponent, and not in the arithmetics involved in the reduction. Specifically, the
larger is the scale, the higher is the fraction of messages occurring over slower
interconnects, i.e., IPU link vs. exchange, or more vs. fewer hops.

Input size: in this section, all parallel experiments intentionally use the small-
est inputs, i.e., one single-precision floating point value (32 bits) per tile. This
choice exposes primarily the cost of data transfers, as opposed to that of arith-
metic computation or local memory access.

For comparison against the parallel experiments, we also perform single-
tile baseline experiments of equal input size as the parallel ones (i.e., 1,216,
then 2,432, ... finally 19,456 operands). These measurements serve as a base-
line for the cost of a reduction when no parallelism is involved.
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Experiment Operands Tiles Total  Avg. latency
per involved latency per input
tile (us)  operand (ns)

Baseline sequential

1 tile 1,216 1 1.69 1.39

1 tile 2,432 1 2.44 1.00

1 tile 4,864 1 3.97 0.82

1 tile 9,728 1 7.02 0.72

1 tile 19,456 1 13.10 0.67

Increasing system diameter

11PU, 1 tile 1 1 0.44 0.44

2 IPUs on the same board 1 2 1.13 0.57

4 TPUs on two PCI boards 1 4 1.48 0.37

8 IPUs on four PCI boards 1 8 2.02 0.25

16 IPUs, entire system 1 16 3.16 0.20

Increasing scale

11IPU, all 1,216 tiles 1 1,216 1.97 1.62

2 IPUs on the same board 1 2,432 5.32 2.19

2 IPUs on different boards, direct IPU link 1 2,432 3.60 1.48

2 IPUs on different boards, no direct IPU link 1 2,432 7.09 2.92

4 IPUs on two PCI boards 1 4,864 7.18 1.48

8 IPUs on four PCI boards 1 9,728 7.68 0.79

16 IPUs, entire system 1 19,456 14.51 0.74

Table 4.16: Reduction, weak scaling: Latency of one reduction as it scales up from a single tile
to an entire 16-IPU system.
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Experiment Operands Tiles Total  Avg. latency
per involved latency per input
tile (us)  operand (ns)

Baseline - one tile 19,456 1 13.1 0.67

11PU, all 1,216 tiles 16 1,216 2.1 0.11

2 IPUs on the same board 8 2,432 5.4 0.28

2 IPUs on different boards, direct IPU link 8 2,432 3.7 0.19

2 IPUs on different boards, no direct IPU link 8 2,432 7.20 0.37

4 IPUs on two PCI boards 4 4,864 7.28 0.37

8 IPUs on four PCI boards 2 9,728 7.78 0.40

16 IPUs, entire system 1 19,456 14.51 0.75

Table 4.17: Reduction, strong scaling: Latency of one reduction as it scales up from a single tile
to an entire 16-1PU system.

4.6.2 Minimum Reduction Latency - Strong Scaling

We benchmark reduction latency once more, but in a strong scaling scenario:
problem size is kept constant across experiments at different scales, in order
to expose the cost of parallelization. We choose the smallest input size that
would place one operand per tile on the largest system considered, i.e., 19,456
operands. Reducing 19,456 single-precision values on one IPU takes 2.1 mi-
crosecond. Performing the same reduction on a 16-IPU system costs 14.51
microseconds.

4.6.3 Peak Reduction Bandwidth

We measure the throughput achieved by reductions of different sizes and
scale. As a measure of reduction throughput, we adopt the input operand
size consumed in the unit of time. In this section, all experiments study weak
scaling. For simplicity, we report quantitative results for only two choices
(1,000 and 25,000 operands per tile) of input size, in Table 4.18. In Figure 4.11
we chart the effect of operand size on reduction bandwidth in a broader and
more detailed spectrum of input sizes.

On-chip scaling. In weak scaling conditions, on-chip aggregate reduction
bandwidth grows remarkably well with system size. The aggregate per-chip
throughput reaches 6.76 TB/s, with a parallel efficiency equal to 92.2%.

Off-chip scaling. For larger inputs (25,000 values per tile), the aggregate
throughput grows by a factor of 9.4x as the system scales up from 1 to 16
IPUs. The peak aggregate throughput of a 16-IPU system reaches an impres-
sive 64.7 TB/s. The per-tile bandwidth degradation is approximately 41%; the
parallel efficiency is 59%.

Operand size. The effect of operand size on performance is evident by di-
rect comparison between the third and fourth band of the table, which re-
port results of experiments with 1,000 and 25,000 values per tiles, respectively.
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Experiment Operands Tiles  Aggregate Bandw.
per involved bandwidth  per tile
tile (GB/s) (GB/s)

Single-IPU baseline performance

Baseline - 1,000 tiles 1,216 1,000 1,671 1.67

Baseline - 1,000 tiles 2,432 1,000 2,657 2.68

Baseline - 1,000 tiles 4,864 1,000 3,747 3.75

Baseline - 1,000 tiles 9,728 1,000 4,729 4.73

Baseline - 1,000 tiles 19,456 1,000 5,432 5.43

Large operands - Single-IPU Weak scaling

Running on ... one tile 25,000 1 6 6.03

... 2 tiles 25,000 2 12 5.97

... 4 tiles 25,000 4 24 591

25,000 8 47 5.86
25,000 16 92 5.72
25,000 38 224 5.90
25,000 76 448 5.89

25,000 152 890 5.85

... a quarter of one IPU 25,000 304 1,769 5.82

... half IPU 25,000 608 3,481 5.73

... the entire IPU 25,000 1,216 6,756 5.56

Smaller operands - Multi-IPU Weak scaling

11PU, all 1,216 tiles 1,000 1,216 1,636 1.34

2 IPUs on the same board 1,000 2,432 1,540 0.63

2 IPUs on different boards, direct IPU link 1,000 2,432 2,090 0.86

2 IPUs on different boards, no direct IPU link 1,000 2,432 1,230 0.51

4 IPUs on two PCI boards 1,000 4,864 2,381 0.49

8 IPUs on two PCI boards 1,000 9,728 4,512 0.46

16 IPUs, entire system 1,000 19,456 5,016 0.26

Larger operands - Multi-IPU Weak scaling

11PU, all 1,216 tiles 25,000 1,216 6,756 5.56

2 IPUs on the same board 25,000 2,432 11,399 4.69

2 IPUs on different boards, direct IPU link 25,000 2,432 12,400 2.55

2 IPUs on different boards, no direct IPU link 25,000 2,432 10,485 2.16

4 IPUs on two PCI boards 25,000 4,864 20,965 4.31

8 IPUs on two PCI boards 25,000 9,728 41,128 4.23

16 IPUs, entire system 25,000 19,456 63,724 3.28

Table 4.18: Reduction bandwidth available at different scales (sequential, 1-16 IPUs) and for
different input sizes, in weak scaling conditions.

Larger operands achieve a substantially higher bandwidth at any scale, and
better scalability overall: the large-vs-small operand speedup is 4.1 x on a sin-
gle IPU, but it grows to 12.7x on a 16-IPU system. We chart a broader set of
results describing the same trends in Figure 4.11.
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4.7 Host Connectivity

In this section we present bandwidth and latency associated with host-to-IPU
data transfers. These metrics are relevant to evaluate potential bottleneck in
achieving high performance in hybrid CPU/IPU applications where the PCI-
express bus lies in the critical path. Bandwidth is important for streaming
applications where CPU data are continuously offloaded to the IPU, and la-
tency is important for inference applications where the output is produced
in a ping-pong fashion across CPU and IPU. The reader should pay consid-
eration to fact that PCI-express is an industry-standard I/O technology; the
results presented here are meant to be compared against the theoretical limit.

SDK version. Performance depends on the version of SDK and drivers em-
ployed. Our results are only representative of SDK 1.0.49. We expect Graph-
core to further optimize host-to-IPU connectivity performance in future re-
leases.

4.7.1 Minimum Host-to-IPU Latency

Benchmark description: we use a benchmark that sends data from the host
to a tensor on IPUs using the graph: :Datastream mechanism with an empty
callback to minimize overhead associated with the software stack. Depend-
ing on the benchmark scale and IPU count, the tensor is distributed across
local memories such as each tile receives exactly 4 byte data. The latency
measurements are taken on the host side as average over multiple multiple
synchronous transfers.

Observations: as shown in Table 4.19, the latency to transfer data to an IPU
is at least 8.81 ps and is stable across the PCl-express topology. Sending
data to different destination IPUs doesn’t show obvious differences in latency.
Data transfer latency also doesn’t increase when communicating with multi-
ple IPUs. We only notice a slight increase in latency as destination tile count
increases. This, however, is a consequence of moving a tensor large enough to
fit the maximum PCl-express payload size, requiring multiple transactions to
complete the transfer.

4.7.2 Peak Host-to-IPU Bandwidth

Benchmark description: we measure aggregate bandwidth with a benchmark
that transfers data from the host to a tensor on IPUs via graph: :DataStream.
The destination tensor is partitioned linearly across all involved tiles and
IPUs. The benchmark sends 40 KB data to each tile, and up to 778.24 MB
to all 16 IPUs. We report results in Table 4.20.

Observations: the achieved aggregate bandwidth increases with the growth
of involved PCle lane count. Since each IPU is connected to the PCle switch
via 8 PCle Gen3 lanes, transfers to one IPU reaches up to ~ 6 GB/s. Every
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Scale  Experiment Destination Total
(IPUs) tiles latency
(us)
Destination tiles are on IPU 0
From CPU ... to 1 tile 1 8.81
... to 2 tiles 2 8.84
4 8.89
8 8.31
16 8.81
38 8.81
76 9.01
1/8 152 8.80
1/4 ... to a quarter of one IPU 304 8.95
1/2 ... to half IPU 608 9.56
1 ... to the entire IPU 1,216 9.87
1 Single destination IPU
... to 1 tile on IPU 0 1 8.87
..toltileonIPU 1 1 8.89
... to 1 tile on IPU 2 1 8.83
... to1tile on IPU 3 1 8.80
... to1tileonIPU 4 1 8.82
... to1tileon IPU 5 1 8.81
... to1tile on IPU 6 1 8.83
... to1tileonIPU 7 1 8.85
... to1tile on IPU 8 1 8.84
... to1tileonIPU9 1 8.80
... to 1 tile on IPU 10 1 8.82
... to1tileon IPU 11 1 8.81
... to 1 tile on IPU 12 1 8.80
... to 1tileon IPU 13 1 8.81
... to 1 tile on IPU 14 1 8.88
... to 1 tile on IPU 15 1 8.82
Multiple destination IPUs, 1 tile each IPU
2 ... to 2 IPUs on the same board 2 8.88
2 ... to 2 IPUs across boards, direct IPU link 2 8.83
2 ... to 2 IPUs across boards, no direct IPU link 2 8.84
4 ... to 4 IPUs on two boards 4 8.83
8 ... to 8 IPUs on four boards 8 8.82
16 ... to 16 IPUs, entire system 16 8.83

Table 4.19: Minimum host-to-IPU latency in experiments of different scale and topology.
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Scale  Experiment Destination ~ PCle  Aggregate  Bandw.
(IPUs) tiles lanes bandwidth per tile
(GB/s)  (MB/s)

Destination tiles are on IPU 0

From CPU to 1 tile 1 8 257  2,565.29

... to 2 tile 2 8 354 1,768.85

4 8 441 1,103.05

8 8 5.07 634.30

16 8 5.43 339.50

38 8 5.85 154.04

76 8 5.74 75.50

1/8 152 8 5.80 38.17

1/4 ... to a quarter of one IPU 304 8 5.82 19.15

1/2 ... to half IPU 608 8 5.87 9.66

1 ... to the entire IPU 1,216 8 5.86 4.82

1 Single destination IPU

... to all tiles on IPU 1 1,216 8 5.84 4.80

... to all tiles on IPU 2 1,216 8 5.85 4.81

... to all tiles on IPU 3 1,216 8 5.87 4.82

... to all tiles on IPU 4 1,216 8 5.84 4.80

... to all tiles on IPU 5 1,216 8 5.84 4.80

... to all tiles on IPU 6 1,216 8 5.84 4.80

... to all tiles on IPU 7 1,216 8 5.84 4.80

... to all tiles on IPU 8 1,216 8 5.97 491

... to all tiles on IPU 9 1,216 8 6.02 4.95

... to all tiles on IPU 10 1,216 8 6.03 4.96

... to all tiles on IPU 11 1,216 8 6.02 4.95

... to all tiles on IPU 12 1,216 8 6.03 4.96

... to all tiles on IPU 13 1,216 8 6.03 496

... to all tiles on IPU 14 1,216 8 6.03 4.96

... to all tiles on IPU 15 1,216 8 6.03 496
Multiple destination IPUs

2 ... to 2 IPUs on the same board 2,432 16 11.35 4.67

2 ... to 2 IPUs across boards, direct IPU link 2,432 16 11.36 4.67

2 ... to 2 IPUs across boards, no direct IPU link 2,432 16 11.35 4.67

4 ... to 4 IPUs on two boards 4,864 16 13.78 2.83

8 ... to 8 IPUs on four boards 9,728 32 27.55 2.83

16 ... to 16 IPUs, entire system 19,456 64 55.04 2.83

Table 4.20: Peak host-to-IPU bandwidth available to concurrent transfers in different transfer
topologies.

four IPUs share the same 16 PCle lanes, thus the transfer to 4 IPUs (h) can
only achieve 13.78 GB/s. The transfer to all 16 IPUs (j) enjoys a bandwidth of
55.04 GB/s.






Chapter 5

Notable Arithmetic Primitives

5.1 Matrix Multiplication

Dense matrix multiplication (matmul) is a workload of such pervasive pres-
ence in HPC and AI/ML applications that its performance on a computing ar-
chitecture is frequently used (and sometimes abused) as a singular proxy for
an architecture’s overall performance. In this section, we report and discuss
IPU dense matrix multiplication performance as offered by poplin, Graph-
core’s linear algebra library, at the time of writing. We compare the IPU’s mat-
mul performance with contemporary GPUs in terms of aggregate throughout
and energy efficiency. We find that the IPU offers an impressive arithmetic
throughput, up to 31.1 TFlops/s in single precision and 124.5 TFlops/s in
mixed precision per chip, surpassing the GPU’s theoretical limits. Actual per-
formance measured on GEMM benchmarks show the IPU as a clear winner
in single precision against NVidia’s V100 GPU. In mixed precision, the com-
parison does not yield a clear winner and requires a more nuanced discussion
that follows.

IPU-GPU comparisons. The IPU offers impressive theoretical compute power
thanks to its specialized hardware called Accumulating Matrix Product (AMP)
units. These units are similar in purpose to the GPU’s TensorCore units. In
the comparisons that follow, the reader should pay consideration to the fact
that while one C2 IPU board contains two IPU processors, a Volta GPU board
(either PCI or SXM2) only contains one GPU processor; we focus on the per-
chip comparisons as of interest to architecture designers.

Theoretical limits. Each IPU tile contains one AMP unit. An AMP unit can
finish 64 mixed-precision or 16 single-precision floating point operations per
clock cycle. At a 1.6-GHz clock rate, the 1,216 tiles on one IPU deliver 31.1
and 124.5 TFlops/s in single and mixed precision, respectively. In single pre-
cision, one IPU processor offers almost twice as much single-precision theo-
retical throughput as one V100 GPU: 31.1 vs. 15.7 TFlops/s. This result also
reflects the fact that on the GPU, TensorCores do not support single precision,

71
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Arithmetic Graphcore C2IPU  NVidia Volta V100 (SXM2)
Precision Units 1IPU  Units 1 GPU
Single Theoretical AMP 31.1 TensorCores N/A
(FP32) Theoretical Vector 7.8 FP cores 15.7
Actual GEMM  AMP 18.9 FP cores 15.5

% Theor. 60.7% 98.7%

Mixed Theoretical AMP 1245 TensorCores 125.0
(FP16.32) Theoretical Vector 15.6  FP cores 314
Actual GEMM  AMP 58.9 TensorCores 90.0

% Theor. 47.3% 72.0%

Table 5.1: Arithmetic throughput per-chip comparison between IPUs and GPUs. We offer theo-
retical upper bounds and actual peak performance that we benchmarked on matrix-matrix multi-
plication (GEMM). Both platforms offer specialized units; we offer independent theoretical upper
bounds for specialized and non-specialized units on both platforms. Benchmarks used the re-
spective vendors’ optimized GEMM functions.

and single-precision computation uses regular FP cores. In mixed precision,
one IPU processor roughly matches one V100 GPU (124.5 vs. 125.0 TFlops/s).
Rows labeled as “Theoretical” in Table 5.1 report these numbers side to side,
offering separate limits for specialized and non-specialized units.

Benchmark. Our experiments benchmark each device’s performance as all of
the chip’s resources are used to perform one, large, matrix-matrix multiplica-
tion. We study performance sensitivity to input size. For simplicity, we only
consider square input matrices, i.e., matmul of A and B, both of size n x n.
We vary n from 16 to the largest size fitting matrices.

Version sensitivity. Because we are benchmarking library functions, perfor-
mance is also a factor of code optimization, not just hardware compute power.
We report actual GEMM performance delivered on each device by the respec-
tive manufacturers’ optimized linear algebra libraries: Graphcore’s poplin
and NVidia’s cuBlas. Our IPU results only describe SDK version 1.0.49, and
may differ significantly from future, more optimized poplin versions. Same
considerations apply to the GPU, where we used cuBLAS version 10.1.0.105.

Single precision. We measured 18.9 TFlops/s per IPU at peak, which is 60%
of the theoretical limit. The two IPUs on a C2 board can deliver twice as
much performance (37.8 TFlops/s) if used in parallel on independent matrix
operands. The IPU outperforms the GPU in a per-chip comparison. This re-
sult reflects the fact that the GPU’s specialized TensorCore units do not sup-
port pure single precision. In Table 5.1, “Actual GEMM” rows report these
results, also specifying what hardware units the library’s GEMM implemen-
tation uses at each precision and what fraction of theoretical throughput they
achieve.
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Precision
Single Mixed
Theoretical arithmetic throughput 31.1 TFlops/s 124.5 TFlops/s
Actual, Peak 18.9 TFlops/s  58.2 TFlops/s
Actual/theoretical fraction 60.7 % 46.7%

Table 5.2: Theoretical arithmetic throughput compared to the actual peak throughput we mea-
sured on dense matrix multiplication on one IPU.

While the IPU delivers higher throughput, the GPU supports larger
operands thanks to its higher device memory capacity. In our experiments,
the largest square matrix operands fitting one IPU are 2,944 x2,944, while on a
32-GB GPU they are roughly ~50,000x ~50,000.

Mixed precision. On both devices, specialized hardware (TensorCores and
AMP units) supports matrix multiplication in mixed precision. Despite one
IPU delivering roughly the same theoretical throughput as one GPU, in
GEMM benchmarks the IPU yields lower performance than a V100 GPU: 58.9
TFlops/s vs. 90.0 TFlops/s, respectively. The IPU uses a lower fraction of its
theoretical limit (47.3%) than the GPU (72.0%). See the lower half of Table 5.1.

In mixed precision as well, the GPU supports larger operands. The largest
square matrix operands fitting an IPU are 2,688 x2,688, while on a 32-GB GPU
they are roughly ~72,000x ~72,000.

Tile mapping. We benchmark two mappings of input operands to tile mem-
ory:

e basic: this benchmark invokes function poplin::matMulacc, map-
ping matrices to tiles linearly via function poputil: :mapTensorLinearly.
Specifically, input matrices are spreads evenly over tiles in a linear lex-
icographic manner, with the indices of the flattened matrix mapped
across increasing tile IDs;

e optimized: this benchmark includes an optimization that preconditions
the two input operands via functions poplin: : createMatMul InputLHs and
...rus. It then uses poplin: :matMul and popops: : scaledAddTo.

Comparison with GPUs. We compare IPUs and GPUs in terms of throughput
and energy efficiency in single and mixed precision. This is a measurement of
how well a platform can minimize the latency to complete matmuls when the
entirety of the processor is available for a single task. We offer comparisons
on a per-chip and per-board basis. Since the IPU board has two chips, we con-
sider a library-based matmul benchmark that extends the matmul operation



74 CHAPTER 5. NOTABLE ARITHMETIC PRIMITIVES

Single precision

— 20 T T

0

(7]

Q

o

E 15 -

5

o

S 10 -

5

o

£

2 5

[0)

g Basic =——+—

£ Opt-mapping ——w#—

< 0 ! ! pt-mapping ]
0 500 1000 1500 2000

Matrix size
Mixed precision

__ 60 \ \

o

a

2 50 [~

i

l_

— 40 -

>

g

S 30 -

o

£ oL

RS

[0]

E 10 Basic ——+— ]|

£ Opt-mapping —w—

< 0 J J p J pping a
0 500 1000 1500 2000

Matrix size

Figure 5.1: Floating-point arithmetic throughput achieved by dense matrix multiplication on one
IPU. For simplicity, we use square inputs (n x n) x (n x n); the horizontal axis varies n.

to both IPUs on a C2 board. The GPU we consider is NVidia’s V100. Table 5.2
summarizes our findings.

We chart results in Figure 5.1, where the horizontal axis represents n, one
side of each square input operand matrix. Performance varies with input size,
with smaller matrices unable to achieve sufficient occupancy of the device.
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This is a common occurrence among massively parallel computing platform
and is of little consequence in most cases. In our benchmark using optimized
tile mapping, performance saturates around 18 and 55 ... 58 TFlops/s in single
and mixed precision, respectively.

We also compare the devices in terms of energy efficiency by charting
throughput values divided by nominal power absorbed by each board in Fig-
ure 5.3. Results are expressed in units of TFlops/s per Watt (TFlops/s/W).
For the V100 GPU, we use nominal power, 250 W.

In both single and mixed precision cases, a single IPU delivers higher effi-
ciency than two IPUs and higher efficiency than the V100 GPU.

5.2 Convolution

We dedicate this section to studying the IPU’s convolution performance. For
our benchmarking suite, we selected a basket of 6 commonly used CNNs
in image classification according to our survey of recent literature [9, 10, 11,
12, 13, 14]. We compare the IPU’s and the V100 GPU’s forward-pass perfor-
mances, on a per-chip basis, first in terms of arithmetic throughput (TFlops/s),
and then in terms of throughput normalized per nominal power consumption
(TFlops/s/W). In our results, IPUs tend to outperform GPUs at smaller batch
sizes. While the GPU supports larger batches thanks to its larger device mem-
ory, it also needs to use larger batches for its compute resources to achieve
sufficient occupancy. For CNNs whose architectures were designed without
GPU efficiency in mind (such as ResNeXt), we observe speedups upward of
700x.

Benchmarking. On each device, we use the manufacturer’s respective opti-
mized convolution primitives: poplin: :convolution from the Poplar SDK ver-
sion 1.0.49, and cudnnconvolutionForward from cuDNN 7.5.0. All benchmarks
use half precision floating point math.

Batch size. On both platforms, we vary batch size over a meaningful range.
Note that sufficiently large batches exceed the memory capacity of both IPUs
and GPUs. Because of the larger GPU device capacity, it supports larger batch
sizes for most layers. Our experiments sweep the range 1 ... 2,048 on the GPU
and 1 ... 128 on the IPU.

Raw results. In Tables 5.4 and 5.5 we report in detail the arithmetic through-
put achieved by each layer of each CNN, for each batch size considered, on
the GPU and IPU respectively. Results show that the GPU prefers larger batch
sizes, with most network layers reaching their peak performances at batch
size 512 or 1,024. In contrast, the IPU supports smaller batch sizes and tends
to achieve peak performance with batch sizes in the 8...32 range. Moreover,
for sizes below peak, the IPU still delivers a good fraction of peak throughput.

Comparison at peak. We now present a simpler and more concise analy-
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sis that abstracts away from batch size. Specifically, we compare the IPU’s
and the GPU’s peak performance at each CNN layer (at the respective peak,
whichever batch sizes they correspond to). Table 5.3 shows both arithmetic
throughput comparisons and energy efficiency comparisons. We use nominal
power figures (250 W for the GPU, 150 W for the IPU). Columns labeled Ratio
show the IPU/GPU throughput and energy efficiency ratios, with over-unity
values indicating an IPU advantage.

Discussion. Results in Table 5.3 support the expectation that the highly paral-
lel fine-grained MIMD architecture of the IPU would provide an advantage in
models using group or separable convolutions. When G=32 for the ResNeXt
model, the IPU shows >100x advantage for certain convolutions. This advan-
tage is not available in legacy CNN models that were originally optimized for
the GPU architecture.

Table 5.3: Comparison between one V100 GPU and one IPU (per chip) in terms of arithmetic
throughput and energy efficiency (i.e., arithmetic throughput normalized over nominal power).
Benchmark: reference basket of convolutional neural networks [9, 10, 11, 12, 13, 14]. The ratio
column reports IPU-over-GPU ratios; over-unity values mean that the IPU is performing better
than the GPU; below-unity, vice versa. Parameters: F;: filter size (height = width); I5: input size
(height = width); I.: input channel; O.: output channel; S: stride; G: group.

Arithmetic Throughput Energy Efficiency

Layer Parameters (TFlops/s) (TFlops/s/W)

F, I, I. o. S G IPU V100 Ratio IPU V100 Ratio
ResNeXt
Convl 7 224 3 64 2 1 15.04 6.26 240 0.10 0.03 4.00
Conv2.1 3 112 64 64 2 1 62.07  22.85 272 041 0.09 4.53
Conv22 1 56 64 128 1 32 0.32 0.04 8.11  0.00 0.00 13.51
Conv2.3 3 56 128 128 1 32 2.58 0.44 586  0.02 0.00 9.77
Conv2.4 1 56 128 256 1 32 1.14 0.15 759 0.01 0.00 12.65
Conv3_1 1 28 256 256 1 32 6.90 0.02 34496 0.05 0.00 574.94
Conv3_.2 3 28 256 256 1 32 3613 0.75 48.17 0.24 0.00 80.29
Conv3.3 1 28 256 512 1 32 1022 0.03 34059 0.07 0.00 567.66
Conv4_1 1 14 512 512 1 32 2821 0.04 70523 0.19 0.00 1175.38
Conv4.2 3 14 512 512 1 32 4569 1.38 33.11 030 0.01 55.18
Conv4.3 1 14 512 1024 1 32 3157 0.06 52623 021 0.00 877.05
Conv5_1 1 7 1024 1024 1 32 28.05 0.08  350.61 0.19 0.00 584.35
Conv5_2 3 7 1024 1024 1 32 3714 4.74 784 025 0.02 13.06
Conv5.3 1 7 1024 2048 1 32 3341 011 30376  0.22 0.00 506.27
ResNet-50 v1.5
Convl 7 224 3 64 2 1 15.04 6.13 245 0.10 0.02 4.09
Conv2_1 3 112 64 64 2 1 6232 2327 2.68 042 0.09 4.46
Conv2.2 1 56 64 64 1 1 5239 8.48 6.18 0.35 0.03 10.30
Conv2.3 3 56 64 64 1 1 7343 4774 154 049 0.19 2.56
Conv2. 4 1 56 64 256 1 1 58.55 12.09 484 039 0.05 8.07
Conv3_1 1 28 256 128 1 1 5487 2071 265 037 0.08 4.42
Conv3_2 3 28 128 128 1 1 58.13  64.07 091 0.39 0.26 1.51
Conv3.3 1 28 128 512 1 1 6239 2138 292 042 0.09 4.86
Conv4.1 1 14 256 256 1 1 44.41 26.61 1.67 030 0.11 2.78
Conv4.2 3 14 256 256 1 1 52.78 7829 0.67 0.35 0.31 1.12
Conv4.3 1 14 256 1024 1 1 60.92  33.67 1.81 0.41 0.13 3.02
Conv5_1 1 7 512 512 1 1 4143 3773 1.10 0.28 0.15 1.83
Conv5.2 3 7 512 512 1 1 5271 8548 0.62 0.35 0.34 1.03
Conv5.3 1 7 512 2048 1 1 57.72  48.69 1.19 038 0.19 1.98

Inception v3
Convl 3 299 3 32 2 1 7.08 391 1.81  0.05 0.02 3.02
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Arithmetic Throughput Energy Efficiency
Layer Parameters (TFlops/s) (TFlops/s/W)
Fy I I. O, S G IPU V100 Ratio IPU V100 Ratio

Conv2 3 149 32 32 1 1 71.59 24.05 2.98 0.48 0.10 4.96
Conv3 3 147 32 64 1 1 7025 3833 1.83 047 0.15 3.05
Conv4 3 147 64 64 2 1 5736 2339 245 0.38 0.09 4.09
Conv5 3 73 64 80 1 1 6566 3749 1.75 044 0.15 2.92
Convé 3 71 80 192 2 1 61.90 32.77 1.89 0.41 0.13 3.15
Conv?7 3 35 192 288 1 1 62.12 61.78 1.01 041 0.25 1.68
Conv8 3 35 288 768 2 1 5085 59.17 0.86 0.34 0.24 1.43
Conv9 3 17 768 1280 2 1 4556 7217 0.63  0.30 0.29 1.05
Conv10 3 8 1280 2048 1 1 4927 8792 056 0.33 0.35 0.93
VGG16
Convl.1 3 224 3 64 1 1 7.20 3.83 1.88  0.05 0.02 3.13
Conv12 3 224 64 128 1 1 75.04 52.01 1.44 0.50 0.21 240
Conv2.1 3 112 128 128 1 1 7260 6459 112 048 0.26 1.87
Conv22 3 112 128 256 1 1 71.79 70.46 1.02 0.48 0.28 1.70
Conv3_1 3 56 256 256 1 1 70.20 78.75 0.89 047 0.32 1.49
Conv32 3 56 256 512 1 1 7210 8135 0.89 048 0.33 1.48
Conv4.1 3 28 512 512 1 1 5853 87.22 0.67  0.39 0.35 1.12
Conv4_2 3 28 512 512 1 1 5854 8728 0.67  0.39 0.35 1.12
Conv5_1 3 14 512 512 1 1 49.92 87.02 057 033 0.35 0.96
SSD v1.1
Convl 3 38 512 1024 2 1 5335 7151 0.75 0.36 0.29 1.24
Conv2 1 19 1024 1024 1 1 54.83 53.46 1.03 0.37 0.21 1.71
Conv3 1 19 1024 512 1 1 57.01 471 1.21 0.38 0.19 2.02
Conv4 3 10 512 512 2 1 46.76 63.02 0.74 0.31 0.25 1.24
Conv5 1 10 512 128 1 1 35.19 24.09 1.46 0.23 0.10 243
Convé 3 10 128 256 2 1 3183 5252 0.61 021 0.21 1.01
Conv?7 1 5 256 128 1 1 16.21 16.07 1.01 0.11 0.06 1.68
Conv8 3 5 128 256 1 1 30.16 63.86 047  0.20 0.26 0.79
Conv9 1 3 256 128 1 1 8.81 10.12 0.87  0.06 0.04 1.45
Conv10 3 3 128 256 1 1 1756 4551 039 0.12 0.18 0.64
AlexNet
Convl 11 227 3 96 4 1 20.04 14.7 1.36 0.13 0.06 227
MaxPooll 3 55 96 96 2 1 5173 3312 156 034 0.13 2.60
Conv2 5 27 96 256 1 1 64.34 86.46 0.74 043 0.35 1.24
MaxPool2 3 27 256 256 2 1 4921 5037 098 0.33 0.20 1.63
Conv3 3 13 256 384 1 1 53.70 82.07 0.65 0.36 0.33 1.09
Conv4 3 13 384 256 1 1 5291 82.02 0.65 0.35 0.33 1.08
Conv5 3 13 256 256 2 1 41.77 5493 0.76 0.28 0.22 1.27

Table 5.4: Convolution performance (arithmetic throughput, TFlops/s) of one NVidia V100 GPU,
in half precision, over our reference basket of convolutional neural network architectures. Missing
data represents experiments that did not fit in device memory.

Layer name Batch size

1 2 4 8 16 32 64 128 256 512 1024 2048
ResNeXt
Convl 2.71 3.75 4.05 5.01 5.89 6.02 6.10 6.14 6.21 6.24 6.26 6.25
Conv2.1 5.89 992 15.04 1791 1842 21.02 2225 2268 2285 2279 2272 2263
Conv22 0.00 0.01 0.01 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Conv2.3 0.11 0.20 0.32 0.40 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44
Conv2.4 0.01 0.03 0.05 0.11 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Conv3_1 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Conv322 0.10 0.20 0.39 0.75 0.17 0.18 0.18 0.18 0.18 0.18 0.17 0.18
Conv3_.3 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Conv4_1 0.00 0.01 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Conv4.2 0.10 0.20 0.36 0.73 1.38 0.34 0.36 0.35 0.36 0.35 0.36 0.35
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Layer name Batch size

1 2 4 8 16 32 64 128 256 512 1024 2048
Conv4.3 0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06
Conv5_1 0.00 0.01 0.02 0.04 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08
Conv5_2 0.09 0.19 0.37 0.74 1.44 2.80 0.70 474 0.72 0.72 0.73 0.73
Conv5.3 0.01 0.02 0.03 0.07 0.09 0.10 0.11 0.11 0.11 0.11 0.11 0.11
ResNet v1.5
Convl 4.66 3.70 4.10 4.94 5.78 591 5.98 6.02 6.09 6.13 6.13 6.13
Conv2_1 4.71 10.00 15.45 18.15 18.70 21.38 22.72 23.13 23.27 23.23 23.14 23.07
Conv22 1.00 2.00 3.99 6.40 6.30 7.12 7.79 8.15 8.32 8.42 8.46 8.48
Conv2.3 6.02 1179 1747 29.06 32.83 3718 4250 4411 4532 4658 4741 4774
Conv2._4 4.00 7.92 8.29 9.76 10.65 11.22 11.69 11.91 12.01 12.07 12.08 12.09
Conv3_1 2.11 4.16 7.77 12.23 15.95 16.02 18.36 19.93 20.33 20.53 20.61 20.71
Conv3_2 3.97 7.94 15.51 28.79 40.58 42.01 53.38 61.81 62.70 63.32 63.44 64.07
Conv3.3 4.07 8.28 13.90 14.69 17.34 19.04 19.88 20.59 20.97 21.21 21.33 21.38
Conv4_1 1.03 2.01 4.00 794 1361 1880 19.62 2274 2524 2585 2622  26.61
Conv4.2 2.38 4.67 9.18 18.04 34.50 48.05 50.21 65.12 76.76 77.85 78.10 78.29
Conv4.3 3.56 8.04 1487 21.85 2342 2851 3223 3185 3238 3294 3336 33.67
Conv5_1 0.85 1.68 3.15 6.10 11.46 20.43 28.45 29.07 34.73 36.68 37.27 37.73
Conv5_2 1.06 2.10 412 835 1680 3297 51.04 5424 7048 8264 84.69 8548
Conv5.3 3.28 651 12.10 2196 3154 3378 4223  48.69 4744 4398 4433 4476
Inception v3
Convl 1.43 1.02 1.15 1.30 1.42 1.46 1.50 1.52 1.53 1.54 1.54 391
Conv2 1047 1426 1671 1913  21.09 2243 2329 2367 2389 2399 2404 24.05
Conv3 18.47 23.19 26.73 30.21 33.03 34.69 36.28 37.27 37.94 38.05 38.33
Conv4 9.02 14.25 17.35 18.12 20.40 22.21 23.21 23.28 23.39 23.34 23.24
Conv5 12.14 18.11 20.81 26.57 31.35 34.52 36.46 36.68 37.23 37.25 37.49 37.49
Conv6 7.10 13.68 19.25 21.16 24.51 28.09 30.42 31.59 32.39 32.77 32.55 32.72
Conv7 1495 2898 4086 43.01 5634 57.85 5877 6121 6152 6167 6175 61.78
Conv8 9.21 18.02 28.60 53.40 57.41 59.17 52.52 55.04 56.74 57.43 57.19 57.56
Conv9 3.68 7.29 14.62 24.16 47.03 52.68 71.49 7217 59.45 61.66 62.97 62.78
Conv10 411 8.15 16.04 32.20 55.52 65.78 72.01 84.09 87.92 73.27 67.99 64.01
VGG16
Convl1.-1 2.30 2.72 3.22 3.43 3.60 3.72 3.79 3.81 3.83 3.83
Conv12 41.87 48.67 49.97 50.68 51.28 51.58 52.01 51.78 51.96
Conv2_1 40.21 4206 5315 6204 6283 6337 6357 6428 6459 6459  64.58
Conv22 4370 5364 66.60 6817 6878 69.18 6996 7040 7043  70.46
Conv3_1 3434 4855 50.16 65.04 7628 7692 7702 7734 7827 7873 7871 7875
Conv3.2 45.16 50.56 66.90 78.72 79.38 79.92 79.88 80.80 81.29 81.35 81.28
Conv4_1 16.99 33.27 51.54 54.48 70.34 82.23 84.11 85.05 85.60 86.61 87.22 87.14
Conv4_2 1694 3323 5153 5448 7033 8230 8410 85.03 8559 8659 87.17 87.28
Conv5_1 4.13 837 1686 33.07 5128 5429 7073 8292 8459 8556 86.00 87.02
SSD v1.1
Conv1l 13.35 26.03 40.11 46.52 61.36 71.51 60.11 62.62 64.01 64.19 64.71 64.86
Conv2 11.12 20.92 37.38 37.73 46.92 52.85 49.97 51.73 52.71 53.00 53.25 53.46
Conv3 749 1427 2534 3257 3191 4113 4366 4440 4570 4648 46.89 47.10
Conv4 0.54 1.07 2.14 4.17 8.33 13.23 25.46 47.36 49.94 63.00 62.44 63.02
Conv5 0.43 0.82 1.62 3.11 591 9.94 12.75 19.01 19.58 22.23 23.87 24.09
Convé 0.26 0.51 1.03 2.04 391 7.57 11.21 20.49 35.59 3791 46.05 52.52
Conv7 0.07 0.13 0.26 0.52 1.06 1.75 3.96 7.19 11.24 14.82 15.02 16.07
Conv8 0.26 0.52 1.03 2.02 3.98 7.84 1522 2890 3935 4853 5489 63.86
Conv9 0.02 0.05 0.10 0.18 0.38 0.63 1.31 2.63 4.50 6.70 8.91 10.12
Conv10 0.09 0.19 0.38 0.75 147 2.84 5.52 10.56 19.66 33.61 42.98 45.51
AlexNet
Convl 3.65 7.32 862 1178 1219 1342 1413 1451 1457 1467 1468 14.70
MaxPooll 2.71 5.32 10.07 13.88 23.14 24.09 28.85 32.18 32.43 32.83 32.87 33.12
Conv2 9.04 1787 3483 4831 50.03 6349 7825 79.18 83.13 8521 8636 86.46
MaxPool2 2.39 459 8.96 16.13 29.04 41.23 4244 45.37 48.62 49.93 49.59 50.37
Conv3 297 581 1157 2243 4298 59.82 6338 6526 7403 7992 80.39 82.07
Conv4 2.18 4.29 852 1672 31.74 4433 4629 5959 70.69 77.62 8180  82.02
Conv5 0.60 1.19 2.37 4.61 9.03 16.13 29.33 41.50 4293 48.96 54.35 54.93
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Table 5.5: Convolution performance (arithmetic throughput, TFlops/s) of one IPU, in half pre-
cision, over our reference basket of convolutional neural network architectures. Missing data
represents experiments that did not fit in device memory.

Layer name Batch size

1 2 4 8 16 32 64 128
ResNeXt
Convl 745 1423 1504 11.95 775 17.82
Conv2_1 30.60 39.87 4774 5550 62.07 5593
Conv22 0.18 0.23 0.28 0.30 0.32 0.32 0.49 0.49
Conv2.3 0.87 1.32 1.62 1.86 2.10 2.58 0.71 0.51
Conv2.4 0.37 0.75 0.92 1.03 1.10 1.14 0.46
Conv3_1 157 2.62 3.90 5.19 6.23 6.90 2.17 1.83
Conv3.2 581 1097 1630 21.39 2770 36.13 10.78 1.87
Conv3.3 2.54 4.27 6.19 7.99 9.33  10.22 3.91 1.72
Conv4_1 3.22 5.85 9.88 1512 22,02 2821 3375 37.18
Conv4.2 1028 1578 2059 33.03 41.61 4569 4526  50.12
Conv4.3 591 9.66 1412 2020 2563 3157 3593 37.87
Conv5_1 2.74 4.82 8.74 1441 2022 28.05 3576 45.81
Conv5.2 777 1116 1591 2560 3131 3714 4506 51.85
Conv5.3 4.84 845 1336 1898 27.61 3341 4151 4744
ResNet-50 v1.5
Convl 745 1423 1504 11.95 775  17.82
Conv2._1 3058 3991 4774 5398 6232 5582
Conv2.2 1185 1892 2673 3684 46.03 5239 5593 59.29
Conv2.3 3444 4579 5430 6521 7079 7343 72.00 66.37
Conv2. 4 2748 3551 4454 5139 5699 5855 43.21
Conv3_1 1623 2259 2789 3541 4379 5487 6086 57.06
Conv3.2 29.82 3820 4703 53.89 56.63 5813 55.88  62.66
Conv3.3 23.16 3272 4129 5186 59.07 6239 4549 4558
Conv4.1 1092 1588 21.75 2829 36.09 4441 5560 58.85
Conv4 .2 26,53 3299 4186 4794 5266 5278 50.36  51.51
Conv4.3 20.65 27.09 3494 4520 5645 6092 5794  54.69
Conv5_1 1030 1556  20.84 2660 3444 4143 5127 5572
Conv5.2 2252 2948 3288  44.85 5271 5035  49.28
Conv5.3 21.39 2791 3284 4266 4981 5772 5514  53.44
Inceptionv3
Convl 2.90 2.66 2.82 3.17 5.70 7.08
Conv2 4461 5819 7092  71.59
Conv3 5598  69.61 7025 67.43
Conv4 37.05 4506 5192 57.36 49.85
Conv5 4330 52.82 6151 6565 65.66 6377  63.55
Convé 3279 4110 4642 5594 6190 5070 35.80
Conv?7 51.80 58.89 59.99  62.12 58.10 61.71
Conv8 4493  50.85 49.13  49.05
Conv9 36.64  45.56 43.23  43.58
Conv10 49.27  41.35 4281 4557
VGG16
Convl._1 6.33 5.36 7.20 7.08
Convl.2 75.04 7489  69.21
Conv2.1 68.90 7260 7071 7041
Conv2.2 7179  70.87  69.25
Conv3_1 64.05 6931 7020  69.03 66.61
Conv3.2 6529 7210 69.13  69.07
Conv4._1 5755  58.53 56.39  56.07
Conv4.2 57.56  58.54 56.39  55.88
Conv5_1 4140  46.76 4992 46.93
SSD v1.1
Convl 4772 4758  53.35
Conv2 4053  47.34 54.83  56.07
Conv3 3290 4036 4838 57.01 55.19  56.07

Conv4 1478 2221 3026  35.26 46.76 4277



82

CHAPTER 5. NOTABLE ARITHMETIC PRIMITIVES

Layer name Batch size
1 2 4 8 16 32 64 128

Conv5 6.62 10.49 16.08 22.04 28.92 35.19 43.25
Conv6 5.30 8.37 12.45 18.04 26.01 31.83 38.45
Conv?7 1.08 2.09 3.88 713 11.23 16.21 22.95
Conv8 4.51 7.07 10.51 14.83 23.64 30.16 37.25
Conv9 043 0.81 1.53 2.94 5.51 8.81 13.24
Conv10 147 2.77 4.62 6.68 11.68 17.56 23.35
AlexNet

Convl 8.40 9.75 11.14 11.15 20.04 17.07
MaxPooll 20.22 2843 3738 4372 5112 51.73 47.83
Conv2 44.03 57.30 62.83 64.34 61.69 60.52
MaxPool2 24.40 28.69 36.60 44.66 49.21 46.32 42.26
Conv3 28.05 37.17 45.68 52.25 53.70 51.04
Conv4 28.62 34.72 42.61 51.43 52.91 50.10
Conv5 1220 1615 2035 2610 3343 41.77 4411
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5.3 Pseudo-Random Number Generation

We compare IPU and GPU performance at bulk pseudo-random number gen-
eration (PRNG) in terms of aggregate throughput on a per-chip basis. We find
that, thanks to its dedicated, in-core PRNG hardware units, the IPU gener-
ates up to 944 billion random samples per second (Gsamples/s), whereas a
V100 GPU generates up to 192 Gsamples/s. While the IPU offers 4.9x more
aggregate throughput than a V100 GPU, it employs a PRNG algorithm that
delivers a lower quality of randomness than the fastest algorithm we bench-
marked on the GPU. The IPU’s performance advantage over the GPU doubles
in a per-board comparison. We are not qualified to judge which platform the
performance-quality trade-off favors. All details follow.

For simplicity, our benchmarks focus only on the generation of pseudo-
random numbers extracted from a uniform distribution.

PRNG on the IPU. On the IPU, each tile includes PRNG acceleration
circuitry that implements a variant of the xoroshiro128+ algorithm by David
Blackman and Sebastiano Vigna [15]. Details on the algorithm are available
upon request from Graphcore. Our benchmark invokes the poprand: :uniform
function from the Poplar SDK. For sufficiently large blocks, the aggregate IPU
throughput offered by the function reaches 944 Gsamples/s; see Figure 5.4.

PRNG on the GPU. On the GPUs, our benchmarks exercise PRNG func-
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tions offered with NVidia’s cuRand[16] library. cuRand supports multi-
ple PRNG algorithms; we benchmark XORWOW, MRG32K3A, MTGP32,
MT19937, Philox4. The fastest algorithm at volume on the V100 GPU is
Philox4[17] by John Salmon. We run the experiment on each GPU (V100 and
T4) at the maximum clock frequency supported by each device.

A comparison on the quality of randomness provided by PRNG algo-
rithms (e.g., TestU01[18] performance) is beyond the scope of this paper.

Output size. We study how bulk PRNG performance varies as a function
of requested output block size. Our results show that both on IPUs and GPUs,
the generation of larger output blocks achieves higher throughputs. On the
two platforms, performance grows and saturates similarly, as a function of
output size (Figure 5.5)
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