GRAPHCORE BENCHMARKS
"NATURAL LANGUAGE PROCESSING MODELS ARE HUGELY IMPORTANT TO MICROSOFT. WE ARE EXTREMELY EXCITED BY THE POTENTIAL THAT THIS NEW COLLABORATION WITH GRAPHCORE WILL DELIVER FOR OUR CUSTOMERS," GIRISH BABLANI, VP AZURE COMPUTE AT MICROSOFT
BERT-BASE : INFRINGEMENT

2x higher throughput with lower latency

NOTES:
Graphcore results on one C2 Card using two IPUs, on SQuAD v1.1 data,
Graphcore C2 (SDK 1.2 GA) using PopART @ 300W TDP
NVIDIA results for 1xV100 with TensorRT 7.0 using sample text data, published 18 May 2020
RESNET-50 : INFERENCE

Lowest Latency Comparison: 4.7x higher throughput | 2.2x lower latency

NOTES: ResNet-50 v1.5
Graphcore : C2 Platform using TensorFlow with synthetic data, (Batch Size 2,4,8,16), (SDK 1.2 GA) @ 300W TDP
NVIDIA V100 with TensorRT 7.0 published 18 May 2020 https://developer.nvidia.com/deep-learning-performance-training-inference using synthetic data, (Batch Size 1,2,8) @ 300W TDP
HUGE PERFORMANCE ADVANTAGE FOR IPU ON SMALLER GROUP CONVOLUTIONS REQUIRED FOR NEXT GEN MODELS...
EFFICIENTNET-B0: TRAINING

7x higher throughput

<table>
<thead>
<tr>
<th></th>
<th>Throughput (images / second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN-B0 modified</td>
<td>4500</td>
</tr>
<tr>
<td>EN-B0</td>
<td>3000</td>
</tr>
<tr>
<td>EN-B0</td>
<td>1500</td>
</tr>
<tr>
<td>EN-B0</td>
<td>0</td>
</tr>
<tr>
<td>GPU</td>
<td>7x</td>
</tr>
<tr>
<td>IPU</td>
<td>5x</td>
</tr>
</tbody>
</table>

NOTES:
EfficientNet-B0 | Real Data (ImageNet)
IPU: Graphcore 2x C2 (SDK 1.2 GA) mixed-precision using TensorFlow @ 600W TDP (EN-B0 modified version uses Group Dim 16)
GPU: 2x leading GPU (FP32) using TensorFlow @ 600W TDP (note: GPU throughput drops with modified version of EN-B0)
GPU results using public Google repo (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/)
EFFICIENTNET-B0: INFERNECE

>15x higher throughput | >14x lower latency

NOTES:
EfficientNet-B0 | Synthetic Data | throughput comparison using highest throughput | latency comparison using lowest latency
IPU: Graphcore C2 (SDK 1.2 GA) mixed-precision using TensorFlow Batch Size 1-12 @ 300W TDP
GPU: 1x leading GPU (FP32) using TensorFlow & published Google reference. Batch Size 1-32 @ 300W TDP
GPU results using public Google repo (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/)
RESNEXT-101: INFEERENCE

7x higher throughput | 24x lower latency

- **IPU (Pytorch via ONNX/PopART)**
- **GPU (Pytorch FP16)**

"WE ARE SEEING A SIGNIFICANT IMPROVEMENT – WITH 3.5X HIGHER PERFORMANCE - IN OUR IMAGE SEARCH CAPABILITY USING RESNEXT ON IPUS, OUT OF THE BOX”

CEO, QWANT

NOTES:
ResNext-101 32x4d | Real data (COCO validation dataset) | headline comparisons using lowest latency for Pytorch
IPU: Graphcore C2 (SDK 1.2 GA) using Pytorch (via ONNX/PopART) Batch Size 2-12 @ 300W TDP
NVIDIA benchmark results on leading GPU FP16 Batch Size 1-32 @ 300W TDP
RESNEXT-50: TRAINING

1.3x higher throughput

Throughput (images / second)

<table>
<thead>
<tr>
<th></th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPU</td>
<td>6,000</td>
</tr>
<tr>
<td>GPU</td>
<td>3,000</td>
</tr>
</tbody>
</table>

NOTES:

ResNext-50 | Real data (ImageNet dataset)

IPU: DSS8440 (SDK 1.2 GA) using Tensorflow 16IPU pipelined. 4 shards, 4 replicas, Batch Size per processor 3

GPU: chassis comparison (power equivalent) using Pytorch (FP16) Batch Size 1024
GROUP CONVOLUTION KERNELS

4x to >100x throughput for depthwise/grouped convolutions

NOTES:
Results averaged over 10,000 iterations. Filter/kernel size 3x3, field size 7x7, number of filters 512, batch size 32
Repeated for varying group dimensions from standard convolution (512) to full depth-wise (1)
Same code on IPU (Graphcore C2 – SDK 1.2 GA) and GPU using TensorFlow | Forward pass only | Both @ 300W TDP

Fully depthwise e.g. EfficientNet

Grouped convolutions (e.g. ResNeXT)

Standard convolution e.g. ResNet
DeepVoice 3 TTS: TRAINING

6.8x higher throughput

NOTES:
DeepVoice3 TextToSpeech | Real Data (VCTK Corpus) | Regular SGD
IPU: Graphcore 1x C2 (SDK 1.2 GA) (FP32) using PopART | Batch Size 4 @ 300W TDP
GPU: 1x leading GPU (FP32) using Pytorch | Batch Size 16 @ 300W TDP
IPU DELIVERS MASSIVE PERFORMANCE ADVANTAGE ON DIFFICULT MACHINE LEARNING PROBLEMS, e.g. FINANCE...
MCMC PROBABILISTIC MODEL: TRAINING

Customer implementation

26x faster time to result with 50% power

"WE WERE ABLE TO TRAIN ONE OF OUR PROPRIETARY PROBABILISTIC MODELS IN 4.5 MINUTES INSTEAD OF 2 HOURS. THAT'S 26X FASTER TIME TO TRAIN THAN OTHER LEADING PLATFORMS."

GEORGE SOKOLOFF, FOUNDER AND CIO, CARMOT CAPITAL

Time to Result

0
1hrs
2hrs

NOTES:
Graphcore customer Markov Chain Monte Carlo Probability model (summary data shared with customer's permission)
IPU: Graphcore GC2 @ 150W TDP
GPU @ 300W TDP
MCMC PROBABILISTIC MODEL: TRAINING
TensorFlow Probability model - representative finance workload for alpha estimation

15x faster time to train

"THE GRAPHCORE IPU IS ALREADY ENABLING US TO EXPLORE NEW TECHNIQUES THAT HAVE BEEN INEFFICIENT OR SIMPLY NOT POSSIBLE BEFORE."
DANIELE SCARPAZZA, R&D TEAM LEAD - CITADEL

NOTES:
Markov Chain Monte Carlo – Probabilistic model with TensorFlow Probability, representative of workload used by Carmot Capital
Neural network with 3 fully-connected layers (num units in 1st layer=40, #dimensions in training set =22, #leapfrog steps=1000, calcs in sliding window=200)
IPU: C2 card (300W TDP) results (SDK 1.2 GA) – 800 samples
GPU (300W TDP) - 800 samples
VAE PROBABILISTIC MODEL: TRAINING

TensorFlow Variational Autoencoder model – MCMC & VI combination

4.8x faster time to train

<table>
<thead>
<tr>
<th>Time to Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

| GPU | IPU |

NOTES:
Scalar control variate used in place of a vector.
IPU: Running on single Graphcore GC2 @ 150W TDP (SDK 1.2 GA) | GPU @ 300W TDP
Both using TensorFlow, real data MNIST, Batch size 100 (as in ICML paper).
LSTM : INFRINGEMENT

>300x higher throughput at lower latency

NOTES:
2 LSTM layers, each with 256 units, 200 time steps, 16 input dimensions, real data, mixed precision
IPU: Graphcore C2 using TensorFlow and PopNN (SDK 1.2 GA) @ 300W TDP (Batch Sizes upto 1024)
GPU: using TensorFlow with optimizations @ 300W TDP (Batch Sizes upto 1024)
LSTM : TRAINING

3.5x higher throughput with 50% power

NOTES:
LSTM Single Layer benchmark vs V100 Deepbench results
Graphcore IPU using TensorFlow @ 150W TDP (SDK 1.2 GA)
GPU: V100 DeepBench results @ 300W TDP (https://github.com/baidu-research/DeepBench/blob/master/results/train/DeepBench_NV_V100.xlsx)
TIME SERIES ANALYSIS: TRAINING
SALES FORECASTING MODEL | Multi-Layer Perceptron (MLP) + Embedding

6x higher throughput (faster time to train)

Notes:
- Multi-Layer Perceptron (MLP) + Embeddings model for forecasting, Real data
- IPU: Graphcore C2 (SDK 1.2 GA) using TensorFlow @ 300W TDP
- GPU using TensorFlow @ 300W TDP
DENSE AUTOENCODER : TRAINING
for content recommendation and ranking

2.5x higher throughput (faster time to train)

NOTES:
Deep autoencoder with 6 fully-connected layers and constrained decoder, BS 64 |
Content recommendation | Training using open source Netflix 3m data-samples
IPU: Graphcore C2 (SDK 1.2 GA) @ 300W TDP
GPU @ 300W TDP
REINFORCEMENT LEARNING POLICY: TRAINING

up to 13x higher throughput (faster time to train)

<table>
<thead>
<tr>
<th></th>
<th>Throughput</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPU</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>25,000</td>
<td>16</td>
</tr>
<tr>
<td>GPU</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- Reinforcement policy model training | representative of large-scale reinforcement learning systems using LSTM
- IPU: Graphcore C2 using TensorFlow @ 300W TDP
- GPU: using TensorFlow @ 300W TDP
OUR IPU LETS INNOVATORS CREATE THE NEXT BREAKTHROUGHS IN MACHINE INTELLIGENCE