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Abstract

Identifying algorithms for compute efficient unsupervised training of large language
models is an important and active area of research. In this work, we develop and
study a simple, dynamic always-sparse pre-training approach for BERT language
models, which leverages periodic compression steps based on magnitude pruning
followed by random parameter re-allocation. As a result, we achieve Pareto
improvements in terms of number of floating-point operations (FLOPs) over both
static and dense baselines across model sizes. Furthermore, we demonstrate that
training remains FLOP-efficient when using coarse-grained block sparsity, making
it particularly promising for efficient execution on modern hardware accelerators.

1 Introduction

The increasing task performance gains of large, pre-trained language models have fueled interest in
approaches for compute efficient unsupervised training [[11]]. In recent years, sparsity has regained
popularity as a technique to make models more computationally efficient by either reducing the
number of model parameters via weight sparsity [18, 9} [1, [17, 15} [3, [16, [10, 20], attention head and
neuron pruning during the early pre-training phase [2] or dynamically routing activations to only
interact with a subset of the network weights via conditional sparsity 19,12} 7, [13]].

In weight sparse training [8, 9]], the network representation itself is compressed and reduced in
parameter count by imposing sparsity patterns on the network weights. As a result, weight sparse
training can lead to significant savings in FLOPs, which make it promising for scaling to larger
network architectures for a given compute budget. One of the most promising candidates for
weight sparse training is dynamic sparsity (DynSp), which reduces FLOPs while only requiring
training of sparse subsets of the over-parameterized network [} [17, |5} 3 [16} [10, 20]]. In DynSp
approaches, the sparsity pattern imposed on the weights is continuously modified during training
using pruning and re-allocation strategies. This leads to a joint exploration of both network topology
and parameters that has been shown to outperform static sparsity baselines [, 17} 5. [3]. However, so
far, DynSp training has not seen adoption for large-scale language modeling tasks [5]], despite recent
algorithmic improvements in the language domain [10]. Given the high cost and energy consumption
of unsupervised training of large-scale language models [21} 18], dynamic sparsity bears the potential
to make pre-training much more efficient and affordable.

In this work, we adopt and investigate DynSp training techniques [3} 5] for pre-training of BERT [4],
a bidirectional language encoder that is based on the highly scalable Transformer architecture [24].
Specifically, we consider the whole family of BERT models of different sizes [23] that allows us to
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compare dense and sparse methods for a given FLOPs budget and assess the scalability of the sparse
training across a wide range of model sizes. Furthermore, we analyze the importance of trainable
parameters by keeping a random pattern of weights non-trainable during training. This allows us to
disentangle the role of *zero’ vs. ’untrainable’ (fixed) weights in the connectivity patterns, to shed
light on the parameter dependence of BERT pre-training.

2 Methodology

Baseline Throughout this work, we study the self-supervised pre-training objective from the original
BERT model [4], which consists of the Masked Language Model (MLM) loss, corresponding to the
task performance in predicting a random subset of masked tokens, and the noisier Next Sentence
Prediction (NSP) loss for binarized next sentence prediction. Using the Adam optimizer, we focus on
phase I of pre-training with a sequence length of 128. All hyperparameters are given in Appendix [A]
and are optimized for a training length of 10 epochs. We compare the sparse task performance on
the full BERT-family Pareto curve [23]], similar to the Same Capacity Sparse vs. Dense Comparison
approach introduced by Tessera et al. [22]]. This allows us to systematically assess algorithmic
differences by comparing DynSp training with dense and static baselines on an equal FLOPs budget.

DynSp algorithm We study and adapt dynamic sparse training algorithms that have been primarily
developed for vision architectures [3} 5] to pre-training of the BERT language models. Specifically, we
impose sparsity on all fully-connected encoder weights (non-embedding weights). The sparsity pattern
is initialized randomly and the ratio is kept fixed in each layer throughout training. Furthermore, we
use random re-allocation of pruned weights instead of gradient-based techniques like RigL [5]. For
one, this avoids potential issues from a collapse of the explored parameter space (compare Fig.[7).
More importantly, it makes our approach always-sparse, such that the full dense model is never
actually instantiated. All DynSp hyperparameters are optimized for a sparsity ratio of 0.9 (for more
details, refer to Appendix [A.T)). The dense and sparse BERT-family learning rates are obtained from
a grid search for 0.0001 - 2 with m = 0,1, ..., 5 (see Appendix[A.3).

3 Results & Discussion

Pareto efficiency We find that the DynSp training algorithm with random re-allocation leads to
Pareto improvements compared to the dense BERT-family (see Fig. [3). The Pareto improvements
of DynSp training over the dense baseline remain largely independent of the model size, indicating
that DynSp training can achieve more efficient utilization of FLOPs or network parameters at any
scale. Furthermore, we find that these performance advantages are due to the continued updates of
the sparsity pattern, as we do not observe any improvements of the static baseline in FLOPs efficiency
of larger models when the randomly initialized sparsity pattern is kept constant. In fact, for large
model sizes static sparsity almost perfectly matches the dense baseline. This indicates that the sparse
network architecture itself brings no performance advantages. Since we only optimize the DynSp
hyperparameters for a sparsity ratio of 0.9, we can not expect the task performance to generalize to
other sparsity ratios. However, interestingly, we observe that the task performance improvements
indeed hold across a range of sparsity ratios without additional tuning (see Fig.[2). In sum, we find
that DynSp training leads to a more efficient utilization of parameters for all model sizes through a
more efficient utilization of FLOPs and trainable weights.
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Figure (3) Characterization of the DynSp pre-training of BERT-Medium with sparsity ratio 0.9.
All measures shown correspond to maximum value obtained during training and are averaged over
all layers. (a) MLM loss as a function of the fraction of explored network parameters (DOF) with
changing number of sparsity pattern updates n. (b) MLM loss as a function of the ratio of removed,
new weights with changing pruning ratio pr. (c¢) Joint effect of pruning ratio pr (solid line) on the
ratio of removed, new weights, and DOF covered during DynSp training. The best performing values
(n = 160, pr = 0.5) are marked by a circle.

Understanding DynSp training dynamics To improve our understanding of the sparse training
dynamics, we extract measures that can help to explain the efficiency of specific hyperparameter
choices (see Appendix [A-T). Given that the DynSp task performance advantage arises from the
continual update of the sparsity pattern, we begin by quantifying the amount of parameter exploration.
While the DynSp models have only a tiny fraction of parameters available at any given time, the
pattern update means that they can explore all network parameters over the course of the training
and thus increase the effective weight space. To measure the effectively covered space, we track the
fraction of network weights of the corresponding dense network that have been activated at any point
during the training and compare with the parameter count of the equivalent dense network to obtain
the total explored degrees of freedom (DOFﬂ

We observe that the number of explored DOF can be controlled through the pruning ratio pr and the
number of sparsity pattern updates n (Fig.[3). Increase of the update frequency leads to a simultaneous
saturation in both task performance and the number of explored degrees of freedom (Fig.[3(a)). On
the other hand, the pruning ratio pr reaches an optimal value and strongly influences the performance
with different fraction of removed, new weights (Fig. [3(b)). Notably, we find that the optimal pruning
ratio is reached once the ratio of DOF approaches 1, corresponding to full exploration of all network

'A similar quantity has been independently studied in Ref. [14]] as "in-time over-parametrization."
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Figure (4) Left panel Evaluation MLM loss of BERT-Small with a random subset of the parameters
set to zero (solid blue curve) or kept untrained (dashed orange). Right panel training loss curves
of BERT-Small during phase I pre-training of 10 epochs (757k steps) for fixing a random subset of
the parameter either early (orange dashed) or late (blue dash-dotted) during the training, as well as
for the dense baseline (solid black). The vertical line indicates the unfreeze (freeze) event location,
where untrainable parameters are made trainable (or trainable parameters are frozen). We pick the
best learning rate for each experiment using a grid search over 0.000175 - 2™ withm = 0,1, 2, 3, 4.

parameters (Fig. EKC)). Further increases in pr remove trainable weights that have just been initialized
in the previous update step and lead to a deterioration in the task performance. In particular, the
performance with different values of the ratio of removed parameters that had been newly allocated is
almost independent of the number of updates.

Overall, we note that the best task performance is obtained by balancing the DOF while avoiding
wasted compute in the form of parameters that are being allocated and immediately removed (see
Fig.[B). Given these findings, we postulate that ideal training outcomes require an exploration of all
available parameters as well as an only moderate amount of noise injection.

Effect of zeroed weight To better understand the impact of sparsification of the BERT architecture,
we ablate the effect of zeroing of parameters by replacing zero-valued parameters with non-zero but
non-trainable parameters. Like zeroed weights, the constant weights can not store information but
might promote the propagation of signals or gradient-flow through the network [6, [15] 22]], or lead to
better utilization of the remaining trainable parameters. However, as shown in Figure 4] we find that
none of these effects plays a relevant role in the training dynamics, since the task performance of the
network with sparsified weights (dashed orange line) matches the one with untrained weights (solid
blue line).

Sparsification and training phases To analyse the effect of sparsification at different stages of
the training process, we keep a random subset of the network parameters frozen in the first half of
the pre-training, before unfreezing in the second half (and vice versa). Unlike magnitude pruning,
freezing and unfreezing of parameters ensures symmetry between the different phases (ignoring the
linearly decaying learning rate schedule). Our findings indicate that representation is continuously
built up during training with no particular effect of when the sparsification is applied.

Structured sparsity So far, we have used unstructured sparsity corresponding to block size 1x1,
which is often less efficient when executed on hardware accelerators. However, we demonstrate that
DynSp training can also preserve some task performance advantages when block sparsity of size 4x4,
8x8, and 16x16 is used (Table[T). This makes DynSp training promising for practical applications
that seek to further benefit from the higher computational efficiency of block computation.

4 Conclusion & Future Work

In this work, we demonstrated that DynSp training of BERT leads to a more FLOP-efficient utilization
of the trainable parameters. However, since we focused on phase I of pre-training only, it remains to
be seen how the task performance of the phase I representation translates into phase II and downstream
tasks. As a next step, we seek to shed further light on the conditions that enable the performance
gains in unsupervised training, particularly the relationship of the number of available parameters
and achievable task performance.



Future work may explore the performance of more structured sparsity. In this respect, we have
found that even a naive block sparse version of the DynSp algorithm remains FLOP-efficient, which
provides additional room to identify the best tradeoff for compute efficient training of large-scale
language models.
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A Technical details

e Optimizer: Throughout this work we use element-wise optimization based on Adam with
weight decay 0.01, 51 = 0.9, B2 = 0.999, ¢ = 1076 x loss-scaling-factor and gradient
clipping, which is known to work well with the sparse gradients found in NLP models.

o Default learning rate schedule consists of 10000 linear warmup steps up to the maximum
learning rate (0.0002 for BERT-Medium and 0.0001 for BERT-Base), followed by a linear
decay over the full training run.

e Default dropout is 0.1 for all models larger then BERT-Small.

o Default BERT floating point precision: We use datatype FP16.16 (16 bit compute with
16 bit partials) throughout the model. The second order moment in the Adam optimizer is
computed and stored in FP32. Embedding are kept in FP16. The default loss-scaling factor
for both BERT-Medium and BERT-Base is 512.

o Initialization scheme: The sparsity pattern is initialized randomly. The weights are initial-
ized using a truncated normal initializer with initialization range of 0.02. This choice was
motivated by having compared different initialization for the sparse model and found that
the dense default truncated normal gives the best task performance as shown in Fig.[5] We
found that preserving the variance of the activation statistics of the sparse model compared
to the dense model [[6] does not lead to any performance gains.
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o Pre-training dataset: Phase I pre-training is performed on Wikipedia and BookCorpus
using Whole Word Masking with a sequence length of 128.

A.1 Hyperparameters specific to dynamic sparsity (DynSp)

Two very important hyper-parameters for DynSp training are the sparsity pattern update frequency,
i.e. how often the network topology is modified, and the pruning ratio, which determines the fraction
of the network topology modified at each update step.



Table (2) Number of sparsity pattern updates n dependence of DynSp BERT-Medium, Ir
0.001397, sparsity s = 0.9, 10 epoch, phase I (pruning ratio pr = 0.5 with cosine decay and random

reallocation).

pr n MLMloss NSP
0.50 40 2468 0.645
0.50 80 2.430 0.656
0.50 160 2409 0.626
0.50 320 2419 0.649

pr n MLMloss NSP loss
0.25 160 2.439 0.655
0.50 160 2413 0.684
0.75 160 2411 0.668
1.00 160 2.459 0.698

Table (3) Pruning ratio pr dependence of DynSp BERT-Medium, {r = 0.001397, sparsity s = 0.9,
10 epoch, phase I (number of updates n = 160 with cosine decay and random reallocation). Same
hyperparameters as in Table@

MLM loss

MLM loss
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e =y
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e Pruning ratio and schedule dependence: We found that the cosine decay of the pruning

ratio introduced in Evci et al. (2019) [5] outperforms constant pruning schedules and leads
to a reduction and convergence of the changes in network topology during training. We refer
to the maximum pruning ratio pr simply as "pruning ratio" throughout the report.

Update frequency dependence: Comparing the task performance of 20, 40, 80, 160 and
320 updates at sparsity ratios 0.9, we find that the task performance improves with the
number of sparsity pattern updates. We chose the number of updates as n = 160 for sparsity
ratio 0.9, as each update is associated with overhead due to the host communication, and we
notice little improvements with further increases in the update frequency.

Total number of pruned parameters The pruning ratio pr and the number of updates n
jointly control the total number of pruned and re-allocated parameters. The total number of
pruned and re-allocated parameters is proportional to their product. We obtain an optimal
value of their product in terms of task performance as shown in Fig. [f]

Re-allocation criteria: We found that random re-allocation outperforms gradient-based
re-allocation. While the pruning criteria lead to a compression of the network topology,
the growing criteria direct the evolution of the network topology and distinguish DynSp
training as a form of neural architecture search during training from mere gradual pruning
approaches. Understanding the requirements for efficient joint subspace exploration of
parameter and network topology space using DynSp training will be essential to scale
towards larger language models. In Fig.[7, we show that for gradient-based re-allocation,
the dense gradient is dominated by outliers in the activation, e.g., along the input dimension

Figure (6) MLM loss vs pruning ratio pr times
number of sparsity pattern updates n for DynSp
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20 40 60 80 100 120 140 160
pr*n
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Figure (7) Left panel Fraction of explored degrees of freedom for static sparsity and DynSp training
using gradient based (RigL [3]]) vs. random re-allocation [3]]. Right panel shows the corresponding
sparsity patterns for the first up-projection in the feedfoward component ("Boom-up") of the second
transformer block, accumulated throughout training, for sparsity=0.9 using RigLL and random based
reallocation. A black (white) dot corresponds to a parameter being non-zero (zero) at any point during
training. The dark horizontal blocks in the RigL. updates indicate a collapse due to outliers along the
input dimension, which indicates that the effect arises from the activation part of the dense gradient
update. This suggests that the collapse could be mitigated by reducing the influence of the activations
during DynSp training update.

Model B MLM FLOPs

Mini - 2614 2.617-10°

Matched (dense) 2.603 2.738-10°
Medium (s = 0.9) 1 2.621 2.738-10°
Medium (s = 0.9) 2.591 2.738-10°
Medium (s = 0.9) 2.546  2.738-10°
Medium (s = 0.9) 2.408 2.738-10°

— B 00 O\

Table (4) Task performance of DynSp BERT-Medium with sparsity 0.9 for various block sizes B
compared to dense BERT-Mini with similar number of FLOPs and linear interpolation of the baseline
values ("Matched") with exaclty the same number of FLOPs. Hyperparameters are not specifically
tuned for different block sizes. See also BERT-Base results in Table E

of each layer, which imposes a strong bias on the available degrees of freedom during the
update step. In agreement with this observation, we find that for random-based re-allocation,
a significantly larger fraction of the network parameters is explored during training, while
for gradient-based re-allocation the training remains constrained into a small subset of all
network parameters (left panel of Fig.[7).

o Blocksize metric The importance of blocks of parameters is assessed by evaluating the
L1-norm of the corresponding blocks.

o Blocksize dependence Block size dependence of BERT-Medium with sparsity 0.9 is given
in Table[dl

A.2 FLOPs estimates for sparse multiplication with dense input

Throughout this report we assume the FLOPs for training a dense layer with sparse weight elements
to approximately scale as O(3 x 2 x I x B x O X f), where B the batch dimension, I is the
input dimension, O the output dimension and f is the density of sparsity pattern imposed on the
corresponding dense layer, which is to the sparsity ratio s as f = 1 — s. The FLOPs estimate can be
divided into the following components:

1. FLOPs estimate for sparse forward pass: Assuming a sparse matrix M has a sparsity
ratio s or a density f = 1 — s, the required matrix multiplication for a given dense input &



and output ¢/ is
Ybi = Z Mijxy;, (D
JIM;57#0
where M has dimension [O, I] and dim(y) = [B, O], dim(z) = [B, I],

(a) Sparse Multiplication: performing the summation zy;; = M;;xy; for ¢, j iff M;; # 0
gives us a reduction of the total number of FLOPs by a fraction of non-zero elements
in M times B leading to B x O x I x f FLOPs.

(b) Sparse Addition: performing > ; #bij Tequires us to calculate the exact number of non-
zeros along the input dimension. B x O x prob(out) x I x prob(in)— B x O x prob(out),
where we defined some probability for non-zero values along out prob(out) and input
dimension prob(in). Assuming a uniform distribution we estimate the FLOPs count to
scale approximately linearly with the sparsity ratio Bx O x I x f —Bx O x f /prob(in)
to first order.

The total FLOPs of sparse multiplication used in the forward pass scales approximately
linearly in the number of non-zeros, i.e. O(2] x B x O x f).

2. FLOPs estimate for recursive propagation of error through the network: Involves a
multiplication of the dense error with the transposed sparse matrix leading O (21 x Bx O X f)
additional FLOPs.

3. FLOPs estimates for the outer product The weight update itself is formed by a sparse
outer product, where only the sparse components need to be updated, which leads to a
further reduction in the number of FLOPs that scales linearly with the density of the matrix.

A.3 Learning rate for sparse and dense models

The results of the learning rate sweep of BERT with various sparsities are given in Table[5] The
corresponding learning rate sweep for the dense BERT-family is given in Table[6] We confirmed
that the optimal learning rates for static sparsity agree with the ones for DynSp in Table[7] We also
evaluated the learning rate dependence of the sparse model for multiple model sizes (not shown).



Ir sparsity MLMloss NSP loss

0.0001 0.00 2.179 0.610
0.0002 0.00 2115 0.598

8:888‘21 8:88 %} }2 8:282 model Ir MLMIloss NSP loss
0.0008 0.00 2.164 0.633 Mini _ 0.000050 3062 0839
0.0001 0.25 2078 0.627 Mini  0.000100 2.833 0811
0.0002 0.25 2.204 0.642 Mini  0.000400 2.625 0.742
0.0004 0.25 2.186 0.596 Mini  0.000800 2606 0775
0.0008 0.25 2.023 0.638 Mini  0.001600 2.628 0.779
0.0001 0.50 2412 0.679 Mini  0.003200 2.665 0.783
0.0002 0.50 2.338 0.671 Small  0.000800 2326 0.644
0.0004 0.50 2,283 0.631 Small  0.000400 2310 0.621
0.0008 0.50 2298 0.648 Small  0.000200 2329 0.635
0.0002 0.75 2.551 0.741 Small  0.001600 2418 0.768
0.0004 0.75 2.483 0.685 Medium  0.000200 2115 0.605
0.0008 0.75 2.446 0.671 Medium ~ 0.000400 2116 0.606
0.0016 0.75 2.449 0.647 Medium ~ 0.000800 2164 0.633
0.0032 0.75 2.547 0.707 Medium ~ 0.000100 2.179 0.610
0.0004 0.90 2723 0.758 Base  0.000025 2.115 0.599
0.0008 0.90 2.677 0711 Base  0.000100 1.878 0.542
0.0016 0.90 2.648 0.706 Base  0.000050 1972 0.569
0.0032 0.90 2.669 0.697 Base  0.000200 1.843 0.488

Table (5) Learning rate (Ir) sweep of Table (6) Learning rate (Ir) sweep for dense
static  sparsity ~BERT-Medium, sparsity BERT-family consisting of BERT-Tiny, Mini,

s =10,0.25,0.5,0.75,0.9. Small, Medium and Base.
model Ir MLMloss NSP loss
0 Medium 0.00064 2.467 0.647
1 Medium 0.00128 2.410 0.670
2 Medium  0.0026 2.429 0.674
3 Medium  0.0051 2.521 0.654

Table (7) Learning rate sweep of DynSp BERT-Medium, sparsity s = 0.9, 10 epoch, phase I used to
confirm that the optimal learning rates for static sparsity from Table [5]translate into optimal learning
rates for DynSp.
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